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Find the face of a subdivision that contains a query point.



Slab Decomposition

I Form slabs with verticals through the subdivision vertices.

I Sort the slabs along the x axis.

I Sort the edges of each slab along the y axis.

I Locate a point via two binary searches.



Complexity
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I Good point location time: O(log n).

I Bad space complexity: O(n2).

I Bad preprocessing time: O(n2 log n).



Trapezoidal Map

R

Overlay the subdivision with a box R and subdivide the bounded
faces with verticals from each vertex to the edges above and below.



Trapezoidal Map Structure
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I The faces of the trapezoidal map are trapezoids and triangles.

I The top and bottom sides are segments of overlay edges.

I The left and right sides are verticals through overlay vertices.

I The left or right side of a triangle is a subdivision vertex.

I The straightforward proof appears in the textbook.

I We assume that subdivision vertex x coordinates are distinct.

I This assumption will be removed later.



Trapezoid Representation
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I A trapezoid ∆ is represented by its top(∆) and bottom(∆)
edges and by its leftp(∆) and rightp(∆) vertices.

I The figure shows the cases for leftp(∆).

I The cases for rightp(∆) are analogous.

I The non-subdivision vertices are represented implicitly.



Space Complexity
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Lemma 6.2 A trapezoidal map of a subdivision with n edges has
at most 6n + 4 vertices and 3n + 1 trapezoids.
Proof
Vertices: 4 from R, 2n from the subdivision, and 2× 2n from the
vertical sides.
Trapezoids: Every trapezoid has a leftp. The bottom of R is the
leftp of one trapezoid, a subdivision edge defines at most two leftp
with its left endpoint and at most one leftp with its right endpoint.

Why doesn’t leftp(∆) define three trapezoids in (a)?



Space Complexity
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Neighbors
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I Distinct x coordinates imply that a trapezoid has at most two
left neighbors and at most two right neighbors (i).

I The left neighbors are encoded by top, bottom, and leftp.

I The right neighbors are encoded by top, bottom, and rightp.

I Each trapezoid stores pointers to its neighbors.

I Duplicate x coordinates allow any number of neighbors (ii).



Trapezoidal Map and Search Graph
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I Find the trapezoid containing a point a by traversing a graph.

I A point node u (white) branches left if ax < ux .

I An edge node s (grey) branches left if a is above s.

I The leafs point to trapezoids.



Incremental Construction of the Trapezoidal Map

1. Create a search graph for the bounding box R.

2. Process the edges si of the subdivision in random order.

2.1 Find the trapezoids that si intersects.
2.2 Update the trapezoids.
2.3 Update the search graph.



Finding the Trapezoids
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1. Find the trapezoid ∆0 that contains the left endpoint using
the search graph.

2. Move right: ∆i is the upper/lower right neighbor of ∆i−1 if si
is above/below rightp(∆i−1).

3. Stop at the trapezoid ∆k that contains the right endpoint.



Identities in Graph Construction
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I Suppose pr is inserted when pq is in the graph.

I The px test and the pq test are identities.
I These cases are handled by secondary tests.

I The px test branches right.
I The pq test branches right when LT(q, p, r) > 0.



Update: One Trapezoid
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Update: General Case
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Degeneracy

I A query point on an edge reports the edge.

I A query point equal to a vertex reports the vertex.

I Equal x coordinates can be eliminated by input perturbation
or by symbolic perturbation.



Symbolic Perturbation
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I Shear the vertices: (x , y)→ (x + εy , y).

I The x order is preserved for small enough positive ε.
I Predicates are evaluated without computing ε or shearing.

I The x order is replaced by lexicographic order.
I The point/edge predicate is unchanged.

I Does this strategy apply to algorithms that construct vertices?
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Randomized Expected Complexity

Theorem 6.3 The trapezoidal map of n segments has O(log n)
query time, O(n) space complexity, and O(n log n) construction
time in randomized expectation.
Proof We will prove each bound in turn.



Expected Query Time
I The segments are inserted in random order s1, . . . , sn.

I The first i segments are Si = {s1, . . . , si}.
I Let Pi be the probability that inserting si creates nodes on the

path through the search graph to the trapezoid that contains
q.

I Let ∆q(Si ) denote the trapezoid of T (Si ) that contains q.

I Key fact: Pi = Pr [∆q(Si ) 6= ∆q(Si−1)].
I If si is removed, ∆q(Si ) vanishes with probability ≤ 4/i .

I si equals its top or bottom.
I si is the only segment incident on its leftp or rightp.

I Let Xi nodes on the path to q be created when si is inserted.

I Case analysis shows that Xi ≤ 3, so E [Xi ] ≤ 3Pi .

I The query time for q is linear in the sum X = X1 + · · ·+ Xn.

I Using linearity of expectation

E [X ] =
n∑

i=1

E [Xi ] ≤
n∑

i=1

3Pi ≤
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i=1
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= 12Hn < 12(log n + 1)



Expected Space Complexity

I The space complexity is proportional to the number of nodes.

I Let ki be the number of trapezoids created by inserting si .

I The graph grows by ki leafs and ki − 1 internal nodes.

I The number of nodes is bounded by 2(k1 + · · ·+ kn).

I Define δ(t, s) to equal 1 if t vanishes from T (Si ) when s is
removed and to equal 0 otherwise.

I Average ki over the i choices of si within Si .
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I The space complexity is 2
∑n

i=1 E [ki ] = O(n).



Expected Construction Time

I Time for si is O(log i) lookup of left endpoint plus E [ki ] = 1.

I Construction time is
∑n

i=1(log i + 1) = n log n.


