Point Location (chapter 6)

Elisha Sacks

Point Location

Find the face of a subdivision that contains a query point.

Slab Decomposition

- Form slabs with verticals through the subdivision vertices.
- Sort the slabs along the x axis.
- Sort the edges of each slab along the y axis.
- Locate a point via two binary searches.

Complexity

- Good point location time: $O(\log n)$.
- Bad space complexity: $O\left(n^{2}\right)$.
- Bad preprocessing time: $O\left(n^{2} \log n\right)$.

Trapezoidal Map

Overlay the subdivision with a box R and subdivide the bounded faces with verticals from each vertex to the edges above and below.

Trapezoidal Map Structure

- The faces of the trapezoidal map are trapezoids and triangles.
- The top and bottom sides are segments of overlay edges.
- The left and right sides are verticals through overlay vertices.
- The left or right side of a triangle is a subdivision vertex.
- The straightforward proof appears in the textbook.
- We assume that subdivision vertex x coordinates are distinct.
- This assumption will be removed later.

Trapezoid Representation

- A trapezoid Δ is represented by its $\operatorname{top}(\Delta)$ and $\operatorname{bottom}(\Delta)$ edges and by its leftp (Δ) and rightp (Δ) vertices.
- The figure shows the cases for leftp (Δ).
- The cases for rightp (Δ) are analogous.
- The non-subdivision vertices are represented implicitly.

Space Complexity

(a)

(b)

(c)

(d)

Lemma 6.2 A trapezoidal map of a subdivision with n edges has at most $6 n+4$ vertices and $3 n+1$ trapezoids.
Proof
Vertices: 4 from $R, 2 n$ from the subdivision, and $2 \times 2 n$ from the vertical sides.
Trapezoids: Every trapezoid has a leftp. The bottom of R is the leftp of one trapezoid, a subdivision edge defines at most two leftp with its left endpoint and at most one leftp with its right endpoint.

Space Complexity

(a)

(b)

(c)

(d)

Lemma 6.2 A trapezoidal map of a subdivision with n edges has at most $6 n+4$ vertices and $3 n+1$ trapezoids.
Proof
Vertices: 4 from $R, 2 n$ from the subdivision, and $2 \times 2 n$ from the vertical sides.
Trapezoids: Every trapezoid has a leftp. The bottom of R is the leftp of one trapezoid, a subdivision edge defines at most two leftp with its left endpoint and at most one leftp with its right endpoint.
Why doesn't leftp (Δ) define three trapezoids in (a)?

Neighbors

- Distinct x coordinates imply that a trapezoid has at most two left neighbors and at most two right neighbors (i).
- The left neighbors are encoded by top, bottom, and leftp.
- The right neighbors are encoded by top, bottom, and rightp.
- Each trapezoid stores pointers to its neighbors.
- Duplicate x coordinates allow any number of neighbors (ii).

Trapezoidal Map and Search Graph

- Find the trapezoid containing a point a by traversing a graph.
- A point node u (white) branches left if $a_{x}<u_{x}$.
- An edge node s (grey) branches left if a is above s.
- The leafs point to trapezoids.

Incremental Construction of the Trapezoidal Map

1. Create a search graph for the bounding box R.
2. Process the edges s_{i} of the subdivision in random order.
2.1 Find the trapezoids that s_{i} intersects.
2.2 Update the trapezoids.
2.3 Update the search graph.

Finding the Trapezoids

1. Find the trapezoid Δ_{0} that contains the left endpoint using the search graph.
2. Move right: Δ_{i} is the upper/lower right neighbor of Δ_{i-1} if s_{i} is above/below rightp $\left(\Delta_{i-1}\right)$.
3. Stop at the trapezoid Δ_{k} that contains the right endpoint.

Identities in Graph Construction

- Suppose $p r$ is inserted when $p q$ is in the graph.
- The p_{x} test and the $p q$ test are identities.
- These cases are handled by secondary tests.
- The p_{x} test branches right.
- The $p q$ test branches right when $\operatorname{LT}(q, p, r)>0$.

Update: One Trapezoid

\uparrow

Update: General Case

Degeneracy

- A query point on an edge reports the edge.
- A query point equal to a vertex reports the vertex.
- Equal x coordinates can be eliminated by input perturbation or by symbolic perturbation.

Symbolic Perturbation

- Shear the vertices: $(x, y) \rightarrow(x+\epsilon y, y)$.
- The x order is preserved for small enough positive ϵ.
- Predicates are evaluated without computing ϵ or shearing.
- The x order is replaced by lexicographic order.
- The point/edge predicate is unchanged.

Symbolic Perturbation

- Shear the vertices: $(x, y) \rightarrow(x+\epsilon y, y)$.
- The x order is preserved for small enough positive ϵ.
- Predicates are evaluated without computing ϵ or shearing.
- The x order is replaced by lexicographic order.
- The point/edge predicate is unchanged.
- Does this strategy apply to algorithms that construct vertices?

Randomized Expected Complexity

Theorem 6.3 The trapezoidal map of n segments has $O(\log n)$ query time, $O(n)$ space complexity, and $O(n \log n)$ construction time in randomized expectation.
Proof We will prove each bound in turn.

Expected Query Time

- The segments are inserted in random order s_{1}, \ldots, s_{n}.
- The first i segments are $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$.
- Let P_{i} be the probability that inserting s_{i} creates nodes on the path through the search graph to the trapezoid that contains q.
- Let $\Delta_{q}\left(S_{i}\right)$ denote the trapezoid of $\mathcal{T}\left(S_{i}\right)$ that contains q.
- Key fact: $P_{i}=\operatorname{Pr}\left[\Delta_{q}\left(S_{i}\right) \neq \Delta_{q}\left(S_{i-1}\right)\right]$.
- If s_{i} is removed, $\Delta_{q}\left(S_{i}\right)$ vanishes with probability $\leq 4 / i$.
- s_{i} equals its top or bottom.
- s_{i} is the only segment incident on its leftp or rightp.
- Let X_{i} nodes on the path to q be created when s_{i} is inserted.
- Case analysis shows that $X_{i} \leq 3$, so $E\left[X_{i}\right] \leq 3 P_{i}$.
- The query time for q is linear in the sum $X=X_{1}+\cdots+X_{n}$.
- Using linearity of expectation

$$
E[X]=\sum_{i=1}^{n} E\left[X_{i}\right] \leq \sum_{i=1}^{n} 3 P_{i} \leq \sum_{i=1}^{n} \frac{12}{i}=12 H_{n}<12(\log n+1)
$$

Expected Space Complexity

- The space complexity is proportional to the number of nodes.
- Let k_{i} be the number of trapezoids created by inserting s_{i}.
- The graph grows by k_{i} leafs and $k_{i}-1$ internal nodes.
- The number of nodes is bounded by $2\left(k_{1}+\cdots+k_{n}\right)$.
- Define $\delta(t, s)$ to equal 1 if t vanishes from $\mathcal{T}\left(S_{i}\right)$ when s is removed and to equal 0 otherwise.
- Average k_{i} over the i choices of s_{i} within S_{i}.

$$
\begin{aligned}
E\left[k_{i}\right] & =\frac{1}{i} \sum_{s \in S_{i}} \sum_{t \in \mathcal{T}\left(S_{i}\right)} \delta(t, s)=\frac{1}{i} \sum_{t \in \mathcal{T}\left(S_{i}\right)} \sum_{s \in S_{i}} \delta(t, s) \\
& \leq \frac{1}{i} \sum_{t \in \mathcal{T}\left(S_{i}\right)} 4=\frac{4\left|\mathcal{T}\left(S_{i}\right)\right|}{i} \leq \frac{4(3 i+1)}{i}<13
\end{aligned}
$$

- The space complexity is $2 \sum_{i=1}^{n} E\left[k_{i}\right]=O(n)$.

Expected Construction Time

- Time for s_{i} is $O(\log i)$ lookup of left endpoint plus $E\left[k_{i}\right]=1$.
- Construction time is $\sum_{i=1}^{n}(\log i+1)=n \log n$.

