
Range Search (chapter 5)

Elisha Sacks

Range Search

date of birth

salary

19,500,000 19,559,999

3,000

4,000

G. Ometer

born: Aug 19, 1954

salary: $3,500

19,500,000 19,559,999

3,000

4,000

2

4

2D 3D

Find the points in an axis-aligned box.

1D Range Search

µ µ
′

3 10 19 23 30 37

49

59 62 70 80

893 19

10

30

37

59 70

62

100

89

8023

49

100 105

I Find the keys in a range [x : x ′], for example [18 : 77].

I Use a binary tree with keys at the leafs.

I Searches for x and x ′ end at leafs µ and µ′.

I The leafs between µ and µ′ are in [x : x ′].

I Need to test if µ and µ′ are in [x : x ′].

Algorithm

νsplit

µ µ
′

root(T)

the selected subtrees

1. Set v to the root of the tree.

2. while v is not a leaf and x ′ ≤ xv or x > xv :
if x ′ ≤ xv , replace v with its left child, else its right child.

3. Search for x in the vsplit subtree.

4. Report right children where the search goes left.

5. Search for x ′ in the vsplit subtree.

6. Report left children where the search goes right.

2D Range Search

x px x
′

y

y
′

py

p

I A 2D range consists of two 1D ranges.

I kd-trees treat the two ranges in the same way.

I Range trees make one primary and the other secondary.

I Assume for now that points have unique x and y coordinates.

kd-tree (originally called 2d-tree)

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

ℓ7

ℓ8

ℓ9

p1 p2

ℓ8

ℓ4

ℓ2

ℓ1

ℓ5

p3 p4 p5

p6 p7

p8 p9 p10

ℓ7ℓ6

ℓ9

ℓ3

I A kd-tree has split lines at internal nodes and points at leafs.

I Split the points with a vertical line through their x median.

I Split each subset with a horizontal line through its y median.

(Median points go left and down.)

I Repeat until every region contains one point.

Complexity of kd-tree Construction

I Algorithm details
I Sort the points on x and on y .
I Obtain the x median xm from the x sorted list.
I Split both lists at xm.
I Pass the left/right halves to the left/right recursive call.
I Likewise for y splits.

I Complexity
I Sorting n points takes O(n log n) time.
I Excluding sorting, T (n) = 2T (n/2) + O(n) for n > 1.
I T (n) = O(n log n).
I Space complexity is O(n) because every leaf stores a point.

Regions

ℓ1

ℓ2

ℓ3

ν

region(ν)

ℓ3

ℓ2

ℓ1

I Each node defines a rectangular region.

I The region of the root is the plane.

I The regions of the children of a node are the intersections of
its region with the half planes of its splitting line.

I They are open to the right or above the splitting line.

Range Search Algorithm

region(ν)

ℓ(ν)

region(lc(ν))

ℓ(ν)left

Search a tree with root v for points in Q (not shown).

If v is a leaf, report its point if it is in Q.
else

Split the region of v to compute the regions of lc(v) and rc(v).
if the region of lc(v) is contained in Q, report it.

else if the region intersects Q, search lc(v).
if the region of rc(v) is contained in Q, report it.

else if the region intersects Q, search rc(v).

Range Search Example

*
p1 p2

p2

p1

p3

p3 p4

p4

p5

p5

p6

p6

p7

p7 p8

p8

p9

p9

p10

p10

p11

p11

p12

p12 p13

p13

I This kd-tree is not constructed with our algorithm.

I The grey nodes are visited when Q is the grey rectangle.

I The region of the * node (dark grey) is contained in Q.

Complexity of kd-tree Search
l r

Q

I The k points in the regions contained in Q take O(k) time.

I The regions of the other visited nodes intersect a side of Q.

I The number that intersect a side is bounded by the number
that intersect its supporting line.

I We bound the number of x split nodes V (n) whose regions
intersect a vertical line l . The y split case is analogous.

I The bound is pessimistic because Q is usually small.

Complexity of kd-tree Search (continued)
l r

Q

I The x split node r has n points in its region.

I The vertical line l intersects the region of one child of r .

I It intersects the regions of both children of this child.

I Each grandchild is an x split node with n/4 points.

I The recurrence is V (n) = 2V (n/4) + 2 for n > 1.

I The solution is O(
√
n), so the time complexity is O(

√
n + k).

Higher Dimensional kd-trees

I kd-trees generalize to 3 dimensions.

I The split lines become planes.

I The construction cycles between x , y , and z splitting planes.

I Likewise in any dimension d .

I The worst-case query time is O(n1−1/d + k).

I They work well for small d in practice.

Range Trees

T

P(ν)

ν

Tassoc(ν)

P(ν)

binary search tree

on y-coordinates

binary search tree on

x-coordinates

I Points are stored in a binary tree with x-coordinate keys.

I Each node v has an associated tree with y -coordinate keys.

I This tree contains the points P(v) in the subtree of v .

Query Algorithm

T

P(ν)

ν

Tassoc(ν)

P(ν)

binary search tree

on y-coordinates

binary search tree on

x-coordinates

I Search the primary tree for the x interval.

I The result is the primary nodes v with P(v) in the x interval.

I Search their associated trees for the y interval.

Space Complexity

p

p

p

p

I A range tree for n points uses O(n log n) space.

I The primary tree has O(n) nodes.

I A point is stored in the associated trees of the nodes on the
primary tree path from the root to its leaf.

I This yields O(n log n) associated tree nodes.

Construction Algorithm

buildRT(xpts, ypts)

1. Build the associated tree using ypts.

2. If xpts contains one point, the primary tree is a leaf.

3. Else

3.1 Let point p have the median x coordinate.
3.2 Split xpts into xpts1 and xpts2 at px .
3.3 Split ypts into ypts1 and ypts2 at px .
3.4 Set v1 to buildRT(xpts1, ypts1).
3.5 Set v2 to buildRT(xpts2, ypts2).
3.6 The primary tree has key px , left child v1, and right child v2.

I xpts are presorted by x ; ypts are presorted by y .

I Splitting maintains these orders.

I The associated tree is built bottom up.

Bottom Up Tree Construction

1 2 3 4 5 6 7 8

input

1 2 3 4 5 6 7 8

731 5

step 1

I Step i constructs level i above the leafs.

I Complexity: n + n/2 + n/4 + · · · < 2n

Bottom Up Tree Construction

1 2 3 4 5 6 7 8

731

1 5

5

step 2

1 2 3 4 5 6 7 8

731

1 5

1

5

step 3

Time Complexity

I Construction
I O(n log n) for sorting the points on x and on y .
I O(k) to build a k-point associated tree.
I Time for primary node v is linear in the size of P(v).
I Construction time is linear in sum of P(v).
I It is O(n log n) because space is O(n log n).

I Search
I O(log n) for the primary tree.
I O(log n + kv) for an associated tree with kv outputs.
I O(log2 n + k) for k outputs.
I Fractional cascading reduces this to O(log n + k).

Higher Dimensional Range Trees

I Approach generalizes to dimension d .

I Time complexity is O(logd n + k).

I Programming looks painful.

I Fractional cascading removes a log n factor.

General Sets of Points

I The distinct coordinates assumption is easily removed.

I Define a composite number as a pair of numbers (a|b).

I Define (a|b) < (c |d) using lexicographic order.

I Replace a point p with p̂ = ((px |py), (py |px)).

I The resulting points have distinct coordinates.

I Form a kd-tree or a range tree for these points.

I Replace a query rectangle [a, b]× [c , d] with
[(a| −∞), (b|∞)]× [(c| −∞), (d |∞)].

I The data need not be changed; just the comparison code.

I The method works in any dimension.

Fractional Cascading
A1

A2

3 10 19 23 30 37 59 62 70 80 100 105

10 19 30 62 70 80 100

I Remove a log n factor from searches of related ordered sets.

I A1 and A2 are sorted arrays with A2 a subset of A1.

I Each element of A1 points to its least upper bound in A2.

I The pointers are set in O(n) time via array traversal.
I Search a range [y : y ′] in A1 and A2 in O(log n + k) time.

1. Find the first index a ≥ y in A1 by binary search.
2. Follow the a pointer to the first index b ≥ y in A2.
3. Traverse A1 and A2 until the indices are greater than y ′.

I Example: [20 : 65], a = 23, b = 30, grey elements returned.

Fractional Cascading in a 2D Range Tree

(2,19)

(5,80)

(7,10)

(8,37)

(12,3)

(15,99)

(17,62) (21,49)

(33,30)

(41,95)

(52,23)

(58,59)

(67,89)

(93,70)

2

5 7 8 12 15

17

21 33 41 52

58

672 93

67584121127

5

8

15

17

52

33

3 99

10 19 37 80

30 49

80 3 99 3049

9962

6210 37

10 3719

8019

99623719103 80 30 4923 59 70 89 95

30 49233 95 59 70 89

23 95 59 70 89

95 23 89 70

3 10 19 23 30 37 49 59 62 70 80 89 95 99

I Replace associated trees with sorted arrays.

I The array of primary node v stores pointers to its y greatest
lower bounds in the arrays of lc(v) and rc(v).

I Search the primary tree as before.

I Compute the first array index with py ≥ y at the split node.

I Update this index at later nodes using the array pointers.

I For each node whose primary set is in the x range, traverse
the associated array starting from its first array index.

