Range Search (chapter 5)

Elisha Sacks
Range Search

Find the points in an axis-aligned box.
1D Range Search

- Find the keys in a range \([x : x']\), for example \([18 : 77]\).
- Use a binary tree with keys at the leaves.
- Searches for \(x\) and \(x'\) end at leaves \(\mu\) and \(\mu'\).
- The leaves between \(\mu\) and \(\mu'\) are in \([x : x']\).
- Need to test if \(\mu\) and \(\mu'\) are in \([x : x']\).
Algorithm

1. Set \(\nu \) to the root of the tree.
2. while \(\nu \) is not a leaf and \(x' \leq x_\nu \) or \(x > x_\nu \):
 - if \(x' \leq x_\nu \), replace \(\nu \) with its left child, else its right child.
3. Search for \(x \) in the \(\nu_{\text{split}} \) subtree.
4. Report right children where the search goes left.
5. Search for \(x' \) in the \(\nu_{\text{split}} \) subtree.
6. Report left children where the search goes right.
A 2D range consists of two 1D ranges.

kd-trees treat the two ranges in the same way.

Range trees make one primary and the other secondary.

Assume for now that points have unique x and y coordinates.
A kd-tree has split lines at internal nodes and points at leaves.

Split the points with a vertical line through their x median.

Split each subset with a horizontal line through its y median. (Median points go left and down.)

Repeat until every region contains one point.
Complexity of kd-tree Construction

- **Algorithm details**
 - Sort the points on x and on y.
 - Obtain the x median x_m from the x sorted list.
 - Split both lists at x_m.
 - Pass the left/right halves to the left/right recursive call.
 - Likewise for y splits.

- **Complexity**
 - Sorting n points takes $O(n \log n)$ time.
 - Excluding sorting, $T(n) = 2T(n/2) + O(n)$ for $n > 1$.
 - $T(n) = O(n \log n)$.
 - Space complexity is $O(n)$ because every leaf stores a point.
Each node defines a rectangular region.

The region of the root is the plane.

The regions of the children of a node are the intersections of its region with the half planes of its splitting line.

They are open to the right or above the splitting line.
Search a tree with root \(v \) for points in \(Q \) (not shown).

If \(v \) is a leaf, report its point if it is in \(Q \).

else

 Split the region of \(v \) to compute the regions of \(lc(v) \) and \(rc(v) \).
 if the region of \(lc(v) \) is contained in \(Q \), report it.
 else if the region intersects \(Q \), search \(lc(v) \).
 if the region of \(rc(v) \) is contained in \(Q \), report it.
 else if the region intersects \(Q \), search \(rc(v) \).
Range Search Example

- This kd-tree is *not* constructed with our algorithm.
- The grey nodes are visited when Q is the grey rectangle.
- The region of the * node (dark grey) is contained in Q.
The k points in the regions contained in Q take $O(k)$ time.

The regions of the other visited nodes intersect a side of Q.

The number that intersect a side is bounded by the number that intersect its supporting line.

We bound the number of x split nodes $V(n)$ whose regions intersect a vertical line l. The y split case is analogous.

The bound is pessimistic because Q is usually small.
The \(x \) split node \(r \) has \(n \) points in its region.

- The vertical line \(l \) intersects the region of one child of \(r \).
- It intersects the regions of both children of this child.
- Each grandchild is an \(x \) split node with \(n/4 \) points.
- The recurrence is \(V(n) = 2V(n/4) + 2 \) for \(n > 1 \).
- The solution is \(O(\sqrt{n}) \), so the time complexity is \(O(\sqrt{n} + k) \).
Higher Dimensional kd-trees

- kd-trees generalize to 3 dimensions.
- The split lines become planes.
- The construction cycles between x, y, and z splitting planes.
- Likewise in any dimension d.
- The worst-case query time is $O(n^{1-1/d} + k)$.
- They work well for small d in practice.
Points are stored in a binary tree with x-coordinate keys.

Each node v has an associated tree with y-coordinate keys.

This tree contains the points $P(v)$ in the subtree of v.
Query Algorithm

- Search the primary tree for the x interval.
- The result is the primary nodes v with $P(v)$ in the x interval.
- Search their associated trees for the y interval.
Space Complexity

- A range tree for n points uses $O(n \log n)$ space.
- The primary tree has $O(n)$ nodes.
- A point is stored in the associated trees of the nodes on the primary tree path from the root to its leaf.
- This yields $O(n \log n)$ associated tree nodes.
Construction Algorithm

buildRT(xpts, ypts)

1. Build the associated tree using ypts.
2. If xpts contains one point, the primary tree is a leaf.
3. Else
 3.1 Let point p have the median x coordinate.
 3.2 Split xpts into xpts1 and xpts2 at p_x.
 3.3 Split ypts into ypts1 and ypts2 at p_x.
 3.4 Set v_1 to buildRT(xpts1, ypts1).
 3.5 Set v_2 to buildRT(xpts2, ypts2).
 3.6 The primary tree has key p_x, left child v_1, and right child v_2.

➤ xpts are presorted by x; ypts are presorted by y.
➤ Splitting maintains these orders.
➤ The associated tree is built bottom up.
Step i constructs level i above the leaves.

Complexity: $n + n/2 + n/4 + \cdots < 2n$
Bottom Up Tree Construction

step 2

step 3
Time Complexity

- **Construction**
 - $O(n \log n)$ for sorting the points on x and on y.
 - $O(k)$ to build a k-point associated tree.
 - Time for primary node v is linear in the size of $P(v)$.
 - Construction time is linear in sum of $P(v)$.
 - It is $O(n \log n)$ because space is $O(n \log n)$.

- **Search**
 - $O(\log n)$ for the primary tree.
 - $O(\log n + k_v)$ for an associated tree with k_v outputs.
 - $O(\log^2 n + k)$ for k outputs.
 - Fractional cascading reduces this to $O(\log n + k)$.
Higher Dimensional Range Trees

- Approach generalizes to dimension d.
- Time complexity is $O(\log^d n + k)$.
- Programming looks painful.
- Fractional cascading removes a log n factor.
The distinct coordinates assumption is easily removed.

Define a composite number as a pair of numbers \((a|b)\).

Define \((a|b) < (c|d)\) using lexicographic order.

Replace a point \(p\) with \(\hat{p} = ((p_x|p_y), (p_y|p_x))\).

The resulting points have distinct coordinates.

Form a \(kd\)-tree or a range tree for these points.

Replace a query rectangle \([a, b] \times [c, d]\) with \([((a|\infty), (b|\infty)] \times [(c|\infty), (d|\infty))\].

The data need not be changed; just the comparison code.

The method works in any dimension.
Fractional Cascading

A1

\[
\begin{array}{cccccccccccc}
3 & 10 & 19 & 23 & 30 & 37 & 59 & 62 & 70 & 80 & 100 & 105 \\
\end{array}
\]

A2

\[
\begin{array}{cccccccccccc}
10 & 19 & 30 & 62 & 70 & 80 & 100 \\
\end{array}
\]

- Remove a log \(n \) factor from searches of related ordered sets.
- \(A_1 \) and \(A_2 \) are sorted arrays with \(A_2 \) a subset of \(A_1 \).
- Each element of \(A_1 \) points to its least upper bound in \(A_2 \).
- The pointers are set in \(O(n) \) time via array traversal.
- Search a range \([y : y']\) in \(A_1 \) and \(A_2 \) in \(O(\log n + k) \) time.
 1. Find the first index \(a \geq y \) in \(A_1 \) by binary search.
 2. Follow the \(a \) pointer to the first index \(b \geq y \) in \(A_2 \).
 3. Traverse \(A_1 \) and \(A_2 \) until the indices are greater than \(y' \).
- Example: \([20 : 65]\), \(a = 23, b = 30 \), grey elements returned.
Fractional Cascading in a 2D Range Tree

- Replace associated trees with sorted arrays.
- The array of primary node v stores pointers to its y greatest lower bounds in the arrays of $lc(v)$ and $rc(v)$.
- Search the primary tree as before.
- Compute the first array index with $p_y \geq y$ at the split node.
- Update this index at later nodes using the array pointers.
- For each node whose primary set is in the x range, traverse the associated array starting from its first array index.