Range Search (chapter 5)

Elisha Sacks

Range Search

Find the points in an axis-aligned box.

1D Range Search

- Find the keys in a range $\left[x: x^{\prime}\right]$, for example [18:77].
- Use a binary tree with keys at the leafs.
- Searches for x and x^{\prime} end at leafs μ and μ^{\prime}.
- The leafs between μ and μ^{\prime} are in $\left[x: x^{\prime}\right]$.
- Need to test if μ and μ^{\prime} are in $\left[x: x^{\prime}\right]$.

Algorithm

1. Set v to the root of the tree.
2. while v is not a leaf and $x^{\prime} \leq x_{v}$ or $x>x_{v}$: if $x^{\prime} \leq x_{v}$, replace v with its left child, else its right child.
3. Search for x in the $v_{\text {split }}$ subtree.
4. Report right children where the search goes left.
5. Search for x^{\prime} in the $v_{\text {split }}$ subtree.
6. Report left children where the search goes right.

2D Range Search

- A 2D range consists of two 1D ranges.
- kd-trees treat the two ranges in the same way.
- Range trees make one primary and the other secondary.
- Assume for now that points have unique x and y coordinates.

kd-tree (originally called 2d-tree)

- A kd-tree has split lines at internal nodes and points at leafs.
- Split the points with a vertical line through their x median.
- Split each subset with a horizontal line through its y median. (Median points go left and down.)
- Repeat until every region contains one point.

Complexity of kd-tree Construction

- Algorithm details
- Sort the points on x and on y.
- Obtain the x median x_{m} from the x sorted list.
- Split both lists at x_{m}.
- Pass the left/right halves to the left/right recursive call.
- Likewise for y splits.
- Complexity
- Sorting n points takes $O(n \log n)$ time.
- Excluding sorting, $T(n)=2 T(n / 2)+O(n)$ for $n>1$.
- $T(n)=O(n \log n)$.
- Space complexity is $O(n)$ because every leaf stores a point.

Regions

- Each node defines a rectangular region.
- The region of the root is the plane.
- The regions of the children of a node are the intersections of its region with the half planes of its splitting line.
- They are open to the right or above the splitting line.

Range Search Algorithm

Search a tree with root v for points in Q (not shown).
If v is a leaf, report its point if it is in Q.
else
Split the region of v to compute the regions of $I c(v)$ and $r c(v)$. if the region of $I c(v)$ is contained in Q, report it. else if the region intersects Q, search $/ c(v)$.
if the region of $r c(v)$ is contained in Q, report it. else if the region intersects Q, search $r c(v)$.

Range Search Example

- This kd-tree is not constructed with our algorithm.
- The grey nodes are visited when Q is the grey rectangle.
- The region of the * node (dark grey) is contained in Q.

Complexity of kd-tree Search

- The k points in the regions contained in Q take $O(k)$ time.
- The regions of the other visited nodes intersect a side of Q.
- The number that intersect a side is bounded by the number that intersect its supporting line.
- We bound the number of x split nodes $V(n)$ whose regions intersect a vertical line I. The y split case is analogous.
- The bound is pessimistic because Q is usually small.

Complexity of kd-tree Search (continued)

- The x split node r has n points in its region.
- The vertical line $/$ intersects the region of one child of r.
- It intersects the regions of both children of this child.
- Each grandchild is an x split node with $n / 4$ points.
- The recurrence is $V(n)=2 V(n / 4)+2$ for $n>1$.
- The solution is $O(\sqrt{n})$, so the time complexity is $O(\sqrt{n}+k)$.

Higher Dimensional kd-trees

- kd-trees generalize to 3 dimensions.
- The split lines become planes.
- The construction cycles between x, y, and z splitting planes.
- Likewise in any dimension d.
- The worst-case query time is $O\left(n^{1-1 / d}+k\right)$.
- They work well for small d in practice.

Range Trees

- Points are stored in a binary tree with x-coordinate keys.
- Each node v has an associated tree with y-coordinate keys.
- This tree contains the points $P(v)$ in the subtree of v.

Query Algorithm

- Search the primary tree for the x interval.
- The result is the primary nodes v with $P(v)$ in the x interval.
- Search their associated trees for the y interval.

Space Complexity

- A range tree for n points uses $O(n \log n)$ space.
- The primary tree has $O(n)$ nodes.
- A point is stored in the associated trees of the nodes on the primary tree path from the root to its leaf.
- This yields $O(n \log n)$ associated tree nodes.

Construction Algorithm

buildRT(xpts, ypts)

1. Build the associated tree using ypts.
2. If xpts contains one point, the primary tree is a leaf.
3. Else
3.1 Let point p have the median x coordinate.
3.2 Split xpts into xpts1 and xpts2 at p_{x}.
3.3 Split ypts into ypts1 and ypts2 at p_{x}.
3.4 Set v_{1} to buildRT(xpts1, ypts1).
3.5 Set v_{2} to buildRT(xpts2, ypts2).
3.6 The primary tree has key p_{x}, left child v_{1}, and right child v_{2}.

- xpts are presorted by x; ypts are presorted by y.
- Splitting maintains these orders.
- The associated tree is built bottom up.

Bottom Up Tree Construction

- Step i constructs level i above the leafs.
- Complexity: $n+n / 2+n / 4+\cdots<2 n$

Bottom Up Tree Construction

Time Complexity

- Construction
- $O(n \log n)$ for sorting the points on x and on y.
- $O(k)$ to build a k-point associated tree.
- Time for primary node v is linear in the size of $P(v)$.
- Construction time is linear in sum of $P(v)$.
- It is $O(n \log n)$ because space is $O(n \log n)$.
- Search
- $O(\log n)$ for the primary tree.
- $O\left(\log n+k_{v}\right)$ for an associated tree with k_{v} outputs.
- $O\left(\log ^{2} n+k\right)$ for k outputs.
- Fractional cascading reduces this to $O(\log n+k)$.

Higher Dimensional Range Trees

- Approach generalizes to dimension d.
- Time complexity is $O\left(\log ^{d} n+k\right)$.
- Programming looks painful.
- Fractional cascading removes a $\log n$ factor.

General Sets of Points

- The distinct coordinates assumption is easily removed.
- Define a composite number as a pair of numbers (a|b).
- Define $(a \mid b)<(c \mid d)$ using lexicographic order.
- Replace a point p with $\hat{p}=\left(\left(p_{x} \mid p_{y}\right),\left(p_{y} \mid p_{x}\right)\right)$.
- The resulting points have distinct coordinates.
- Form a kd-tree or a range tree for these points.
- Replace a query rectangle $[a, b] \times[c, d]$ with $[(a \mid-\infty),(b \mid \infty)] \times[(c \mid-\infty),(d \mid \infty)]$.
- The data need not be changed; just the comparison code.
- The method works in any dimension.

Fractional Cascading

- Remove a $\log n$ factor from searches of related ordered sets.
- A_{1} and A_{2} are sorted arrays with A_{2} a subset of A_{1}.
- Each element of A_{1} points to its least upper bound in A_{2}.
- The pointers are set in $O(n)$ time via array traversal.
- Search a range $\left[y: y^{\prime}\right]$ in A_{1} and A_{2} in $O(\log n+k)$ time.

1. Find the first index $a \geq y$ in A_{1} by binary search.
2. Follow the a pointer to the first index $b \geq y$ in A_{2}.
3. Traverse A_{1} and A_{2} until the indices are greater than y^{\prime}.

- Example: [20:65], $a=23, b=30$, grey elements returned.

Fractional Cascading in a 2D Range Tree

- Replace associated trees with sorted arrays.
- The array of primary node v stores pointers to its y greatest lower bounds in the arrays of $I c(v)$ and $r c(v)$.
- Search the primary tree as before.
- Compute the first array index with $p_{y} \geq y$ at the split node.
- Update this index at later nodes using the array pointers.
- For each node whose primary set is in the x range, traverse the associated array starting from its first array index.

