Projective Geometry

Elisha Sacks

Motivation

- The projective plane adds points at infinity to the affine plane.
- Two parallel lines intersect at a point at infinity.
- Asymptotes of algebraic curves are points at infinity.
- These concepts remove special cases from affine geometry.
- Any two projective lines intersect at a unique point.
- Every projective algebraic curve consists of closed loops.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Projective Points

- A projective point is a line through the origin of \Re^3 .
- Its homogenous coordinates are any point (a, b, c) on the line.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ If $c \neq 0$, it intersects the z = 1 plane at (a/b, b/c, 1) and represents the affine point (a/c, b/c).
- lf c = 0, it is at infinity.

Projective Points

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

- ► The pink lines are affine points.
- The blue lines are points at infinity.

Projective Lines

- A projective line is a plane through the origin of \Re^3 .
- The line ux + vy + wz = 0 is written as $\langle u, v, w \rangle$.
- ► It consists of the affine points (a, b, 1) with (a, b) on the affine line ux + vy + w = 0, plus (-v, u, 0) at infinity.
- The line at infinity z = 0 consists of all the points at infinity.

Plane Model

- Map an affine point to its intersection with the z = 1 plane.
- Map the line at infinity to the z = 0 plane.
- Affine lines are on the z = 1 plane.
- Their points at infinity are on the z = 0 plane.

Sphere Model

Map a point to its two intersections with the unit sphere.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Lines map to great circles.
- The line at infinity maps to the equator.

Sphere Model

The pink lines (affine points) lie on the great circle.
The blue lines (points at infinity) lie on the equator.

Hemisphere Model

- Map a point to its intersection with the northern hemisphere.
- Affine lines map to great semicircles.
- The line at infinity maps to the equator.

Points and Lines

- The line through points p and q has normal p × q.
- Lines m and n intersect at the point p = m × n.
- If m and n are affine and non parallel, p is affine.
- ▶ If *m* and *n* are parallel, *p* is at infinity. $(u, v, w) \times (u, v, w') = (-v(w-w'), u(w-w'), 0) = (-v, u, 0)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- If m is the line at infinity, p is n's point at infinity. (0,0,1) × (u, v, w) = (−v, u, 0)
- The line at infinity is parallel to every affine line.

Examples

The affine lines x + y - 1 = 0 and x - y - 1 = 0 intersect at (1,0). The projective lines x + y - z = 0 and x - y - z = 0 intersect at $(1, 1, -1) \times (1, -1, -1) = (1, 0, 1)$.

The affine lines x - y - 1 = 0 and x - y - 2 = 0 are parallel. The projective lines x - y - z = 0 and x - y - 2z = 0 intersect at $(1, -1, -1) \times (1, -1, -2) = (1, 1, 0)$.

The affine points (1,1) and (2,3) define the line -2x + y + 1 = 0. The projective points (1,1,1) and (2,3,1) define the line -2x + y + z = 0, since $(1,1,1) \times (2,3,1) = (-2,1,1)$.

The affine line through (a, b) in direction (c, d) is the projective line $(a, b, 1) \times (c, d, 0)$.

Duality

There is a natural duality between the point p = (a, b, c) and the line $\hat{p} = \langle a, b, c \rangle$.

Unlike the affine case, every line has a dual.

If a point p is on a line l, \hat{l} is on \hat{p} , since the original equation is $p \cdot l = 0$ and the dual equation is $\hat{l} \cdot \hat{p} = 0$.

If a line *I* passes through points *p* and *q*, \hat{p} and \hat{q} intersect at \hat{l} , since $l = p \times q$ implies $l \cdot p = 0$ and $l \cdot q = 0$, so $\hat{l} \cdot \hat{p} = 0$ and $\hat{l} \cdot \hat{q} = 0$.

Projective Varieties

A projective variety is the zero set of a homogeneous polynomial p(x, y, z); every term of the polynomial has the same degree d. Examples: a projective line is homogeneous with d = 1 and

 $xy - z^2$ is homogeneous with d = 2.

A homogeneous polynomial is zero or nonzero for all the homogeneous coordinates of a projective point.

The projective variety p(x, y, z) = 0 consists of the affine variety p(x, y, 1) = 0, which is its intersection with the plane z = 1, plus the points at infinity p(x, y, 0) = 0, which are its intersection with the plane z = 0.

Example: $xy - z^2 = 0$ consists of the hyperbola xy = 1 plus the points at infinity (1, 0, 0) and (0, 1, 0).

(日)((1))

Homogenization

Homogenization: Convert an affine polynomial p(x, y) = 0 to a homogeneous polynomial in x, y, z by substituting x/z for x and y/z for y then clearing the denominator.

Example: the hyperbola xy - 1 = 0 homogenizes to $xy - z^2 = 0$.

Dehomogenization: Convert a homogeneous polynomial to an affine polynomial by substituting z = 1.

Let q(x, y, z) be the homogenization of p(x, y). The affine variety of p equals the affine part of the projective variety of q, that is the points with z = 1. The points at infinity of q are the zeroes of the leading (highest degree) terms of p, since the other terms of q are zero for z = 0.

The line y = 2x + 2 homogenizes to 2x - y + 2z = 0 with point at infinity (1,2,0) that equals (0.447, 0.894, 0) in the hemisphere model. This point converts the affine line into a loop.

Parabola

The parabola $y = x^2$ homogenizes to $yz - x^2 = 0$ with point at infinity (0, 1, 0) that converts the affine parabola into a loop.

The ellipse $x^2 + 4y^2 = 4$ homogenizes to $x^2 + 4y^2 - 4z^2 = 0$ with no points at infinity, since the affine ellipse is already closed.

Hyperbola

The hyperbola xy = 1 homogenizes to $xy - z^2 = 0$ with points at infinity (1,0,0) and (0,1,0). These points convert the two components of the affine hyperbola into a single loop.

Cubic

The cubic $y = x^3$ homogenizes to $yz^2 - x^3 = 0$ with point at infinity (0, 1, 0) that converts the affine variety to a loop.

Complex Projective Geometry

The true setting for algebraic geometry is complex projective space. Example: The circle $x^2 + y^2 = 1$ homogenizes to $x^2 + y^2 = z^2$ with points at infinity $(\pm 1, i)$.

Bezout's theorem If polynomials p and q of degrees m and n do not have a common component, they have mn complex projective roots counting multiplicity.

Example: The intersection of two circles consists of two real or complex affine points and the two points at infinity $(\pm 1, i)$.

Projective Geometry in *n* Dimensions

- Every affine space kⁿ has a projective space P(kⁿ).
- The projective points are lines through the origin of k^{n+1} .
- The homogeneous coordinates are (x_1, \ldots, x_{n+1}) .
- ▶ If $x_{n+1} \neq 0$, x maps to the affine point $\left(\frac{x_1}{x_{n+1}}, \ldots, \frac{x_n}{x_{n+1}}\right)$.
- If $x_{n+1} = 0$, x is at infinity.
- The plane, sphere, and hemisphere models generalize.

(日)((1))

- The points at infinity are isomorphic to $P(k^{n-1})$.
- The space $P(\Re^3)$ is used in graphics.

Limitations of Projective Geometry

- Although the projective plane eliminates the special cases of the affine plane, it also has disadvantages.
- The projective plane is not orientable.
- Lines have one side: removing a line leaves a connected set.
- Segments are ambiguous: two points split their line into two connected parts that cannot be distinguished.
- Likewise, the direction from a to b is ambiguous, e.g. each point at infinity lies in two directions from every affine point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Convexity is undefined.

Oriented Projective Geometry

- Stolfi [1] defines an oriented version of projective geometry that solves these problems at the cost of increased complexity.
- Each projective point is split into two oriented points: the line ka is split into the rays ka and -ka with k > 0.
- Each projective line is split into two oriented lines likewise.
- In the sphere model, opposite points are no longer identified and great circles are oriented.
- The convex hull of a set of points is the dual of the envelope of the dual lines.
- [1] J. Stolfi, Oriented Projective Geometry, Academic Press, 1991.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Spherical Computational Geometry

- A point a has normal vector a.
- A segment *ab* lies in the plane with normal *n* = *a* × *b* and is traversed counterclockwise around *n*.

• The tangent to *ab* at *b* is $t(ab, b) = (a \times b) \times b = n \times b$.

Spherical Computational Geometry

- The path *abc* is a left turn if $b \cdot t(ab, b) \times t(bc, b) > 0$.
- The segment intersection predicate is as before.

Spherical Computational Geometry

- Some algorithms transfer easily from the plane to the sphere.
- Some rely on properties of the plane that differ on the sphere.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ For example, the sum of the angles of a triangle is not 180°.
- Spherical geometry is an instance of Riemann geometry.