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Motivation

I The projective plane adds points at infinity to the affine plane.

I Two parallel lines intersect at a point at infinity.

I Asymptotes of algebraic curves are points at infinity.

I These concepts remove special cases from affine geometry.

I Any two projective lines intersect at a unique point.

I Every projective algebraic curve consists of closed loops.



Projective Points
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I A projective point is a line through the origin of <3.

I Its homogenous coordinates are any point (a, b, c) on the line.

I If c 6= 0, it intersects the z = 1 plane at (a/b, b/c , 1) and
represents the affine point (a/c, b/c).

I If c = 0, it is at infinity.



Projective Points

I The pink lines are affine points.

I The blue lines are points at infinity.



Projective Lines

I A projective line is a plane through the origin of <3.

I The line ux + vy + wz = 0 is written as 〈u, v ,w〉.
I It consists of the affine points (a, b, 1) with (a, b) on the

affine line ux + vy + w = 0, plus (−v , u, 0) at infinity.

I The line at infinity z = 0 consists of all the points at infinity.



Plane Model

I Map an affine point to its intersection with the z = 1 plane.

I Map the line at infinity to the z = 0 plane.

I Affine lines are on the z = 1 plane.

I Their points at infinity are on the z = 0 plane.



Sphere Model

I Map a point to its two intersections with the unit sphere.

I Lines map to great circles.

I The line at infinity maps to the equator.



Sphere Model

I The pink lines (affine points) lie on the great circle.

I The blue lines (points at infinity) lie on the equator.



Hemisphere Model

I Map a point to its intersection with the northern hemisphere.

I Affine lines map to great semicircles.

I The line at infinity maps to the equator.



Points and Lines

I The line through points p and q has normal p × q.

I Lines m and n intersect at the point p = m × n.

I If m and n are affine and non parallel, p is affine.

I If m and n are parallel, p is at infinity.
(u, v ,w)×(u, v ,w ′) = (−v(w−w ′), u(w−w ′), 0) = (−v , u, 0)

I If m is the line at infinity, p is n’s point at infinity.
(0, 0, 1)× (u, v ,w) = (−v , u, 0)

I The line at infinity is parallel to every affine line.



Examples

The affine lines x + y − 1 = 0 and x − y − 1 = 0 intersect at
(1, 0). The projective lines x + y − z = 0 and x − y − z = 0
intersect at (1, 1,−1)× (1,−1,−1) = (1, 0, 1).

The affine lines x − y − 1 = 0 and x − y − 2 = 0 are parallel. The
projective lines x − y − z = 0 and x − y − 2z = 0 intersect at
(1,−1,−1)× (1,−1,−2) = (1, 1, 0).

The affine points (1, 1) and (2, 3) define the line −2x + y + 1 = 0.
The projective points (1, 1, 1) and (2, 3, 1) define the line
−2x + y + z = 0, since (1, 1, 1)× (2, 3, 1) = (−2, 1, 1).

The affine line through (a, b) in direction (c, d) is the projective
line (a, b, 1)× (c , d , 0).



Duality

There is a natural duality between the point p = (a, b, c) and the
line p̂ = 〈a, b, c〉.
Unlike the affine case, every line has a dual.

If a point p is on a line l , l̂ is on p̂, since the original equation is
p · l = 0 and the dual equation is l̂ · p̂ = 0.

If a line l passes through points p and q, p̂ and q̂ intersect at l̂ ,
since l = p × q implies l · p = 0 and l · q = 0, so l̂ · p̂ = 0 and
l̂ · q̂ = 0.



Projective Varieties

A projective variety is the zero set of a homogeneous polynomial
p(x , y , z); every term of the polynomial has the same degree d .

Examples: a projective line is homogeneous with d = 1 and
xy − z2 is homogeneous with d = 2.

A homogeneous polynomial is zero or nonzero for all the
homogeneous coordinates of a projective point.

The projective variety p(x , y , z) = 0 consists of the affine variety
p(x , y , 1) = 0, which is its intersection with the plane z = 1, plus
the points at infinity p(x , y , 0) = 0, which are its intersection with
the plane z = 0.

Example: xy − z2 = 0 consists of the hyperbola xy = 1 plus the
points at infinity (1, 0, 0) and (0, 1, 0).



Homogenization

Homogenization: Convert an affine polynomial p(x , y) = 0 to a
homogeneous polynomial in x , y , z by substituting x/z for x and
y/z for y then clearing the denominator.

Example: the hyperbola xy − 1 = 0 homogenizes to xy − z2 = 0.

Dehomogenization: Convert a homogeneous polynomial to an
affine polynomial by substituting z = 1.

Let q(x , y , z) be the homogenization of p(x , y). The affine variety
of p equals the affine part of the projective variety of q, that is the
points with z = 1. The points at infinity of q are the zeroes of the
leading (highest degree) terms of p, since the other terms of q are
zero for z = 0.



Line

The line y = 2x + 2 homogenizes to 2x − y + 2z = 0 with point at
infinity (1, 2, 0) that equals (0.447, 0.894, 0) in the hemisphere
model. This point converts the affine line into a loop.



Parabola

The parabola y = x2 homogenizes to yz − x2 = 0 with point at
infinity (0, 1, 0) that converts the affine parabola into a loop.



Ellipse

The ellipse x2 + 4y2 = 4 homogenizes to x2 + 4y2 − 4z2 = 0 with
no points at infinity, since the affine ellipse is already closed.



Hyperbola

The hyperbola xy = 1 homogenizes to xy − z2 = 0 with points at
infinity (1, 0, 0) and (0, 1, 0). These points convert the two
components of the affine hyperbola into a single loop.



Cubic

The cubic y = x3 homogenizes to yz2 − x3 = 0 with point at
infinity (0, 1, 0) that converts the affine variety to a loop.



Complex Projective Geometry

The true setting for algebraic geometry is complex projective space.

Example: The circle x2 + y2 = 1 homogenizes to x2 + y2 = z2

with points at infinity (±1, i).

Bezout’s theorem If polynomials p and q of degrees m and n do
not have a common component, they have mn complex projective
roots counting multiplicity.

Example: The intersection of two circles consists of two real or
complex affine points and the two points at infinity (±1, i).



Projective Geometry in n Dimensions

I Every affine space kn has a projective space P(kn).

I The projective points are lines through the origin of kn+1.

I The homogeneous coordinates are (x1, . . . , xn+1).

I If xn+1 6= 0, x maps to the affine point ( x1
xn+1

, . . . , xn
xn+1

).

I If xn+1 = 0, x is at infinity.

I The plane, sphere, and hemisphere models generalize.

I The points at infinity are isomorphic to P(kn−1).

I The space P(<3) is used in graphics.



Limitations of Projective Geometry

I Although the projective plane eliminates the special cases of
the affine plane, it also has disadvantages.

I The projective plane is not orientable.

I Lines have one side: removing a line leaves a connected set.

I Segments are ambiguous: two points split their line into two
connected parts that cannot be distinguished.

I Likewise, the direction from a to b is ambiguous, e.g. each
point at infinity lies in two directions from every affine point.

I Convexity is undefined.



Oriented Projective Geometry

I Stolfi [1] defines an oriented version of projective geometry
that solves these problems at the cost of increased complexity.

I Each projective point is split into two oriented points: the line
ka is split into the rays ka and −ka with k > 0.

I Each projective line is split into two oriented lines likewise.

I In the sphere model, opposite points are no longer identified
and great circles are oriented.

I The convex hull of a set of points is the dual of the envelope
of the dual lines.

[1] J. Stolfi, Oriented Projective Geometry, Academic Press, 1991.



Spherical Computational Geometry
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I A point a has normal vector a.

I A segment ab lies in the plane with normal n = a× b and is
traversed counterclockwise around n.

I The tangent to ab at b is t(ab, b) = (a× b)× b = n × b.



Spherical Computational Geometry
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I The path abc is a left turn if b · t(ab, b)× t(bc, b) > 0.

I The segment intersection predicate is as before.



Spherical Computational Geometry

I Some algorithms transfer easily from the plane to the sphere.

I Some rely on properties of the plane that differ on the sphere.

I For example, the sum of the angles of a triangle is not 180◦.

I Spherical geometry is an instance of Riemann geometry.


