Predicates

Elisha Sacks

Planar Vector Geometry

- Vectors represent positions and directions.
- Vector u has Cartesian coordinates $u=\left(u_{x}, u_{y}\right)$.
- Inner product: $u \cdot v=u_{x} v_{x}+u_{y} v_{y}$.
- Vector length: $\|u\|=\sqrt{u \cdot u}$.
- Unit vector: $u /\|u\|$.
- Cross product: $u \times v=u_{x} v_{y}-u_{y} v_{x}$
- Let α be the angle between u and v.
- $u \cdot v=\|u\| \cdot\|v\| \cdot \cos \alpha$.
- $u \times v=\|u\| \cdot\|v\| \cdot \sin \alpha$.

Predicates

- A predicate is a polynomial in the parameters of objects.
- Our parameters are the Cartesian coordinates of points.
- We have already seen the left turn predicate for 2D points $\operatorname{LT}(a, b, c)=(c-b) \times(a-b)$.
- It has the same sign as $\sin \alpha$ with $\alpha=\angle(c-b, a-b)$.
- It can also be expressed as the determinant

$$
\operatorname{LT}(a, b, c)=\left|\begin{array}{lll}
a_{x} & a_{y} & 1 \\
b_{x} & b_{y} & 1 \\
c_{x} & c_{y} & 1
\end{array}\right|
$$

- Another simple predicate is the order of points a and b in direction $u:(b-a) \cdot u$ is positive if b comes after a.

Circles

- A circle can be represented by a center o and a radius r.
- A circle can also be represented by points a, b, and c.
- The first representation has three independent parameters.
- The second representation has six dependent parameters.
- Circle predicates depend on the choice of representation.
- A point p is outside an o, r circle if $\|p-o\|-r$ is positive.
- The predicate can be rewritten without a square root as $(p-o) \cdot(p-o)-r^{2}$.

Point in Circle

- The predicate for a point p and an a, b, c circle is

$$
\left|\begin{array}{llll}
a_{x} & a_{y} & a \cdot a & 1 \\
b_{x} & b_{y} & b \cdot b & 1 \\
c_{x} & c_{y} & c \cdot c & 1 \\
p_{x} & p_{y} & p \cdot p & 1
\end{array}\right|
$$

- The predicate is positive when p is outside the circle if a, b, c are in counterclockwise order around the circle.
- Replacing p with (x, y) and expanding along the last row yields $\operatorname{LT}(a, b, c)\left(x^{2}+y^{2}\right)+u x+v y+w$.
- This is the equation of a circle after dividing by $\operatorname{LT}(a, b, c)$.
- It is the circle through a, b, c because the determinant is zero when p equals a, b, or c, since two rows are equal.
- It is positive for sufficiently large p because the LT is positive.

Angle Order

- Task: sort points counterclockwise around a point o.
- Need to define the order of points a and b around o.
- If $a_{y}>o_{y}$ and $b_{y}<o_{y}, a$ is first.
- If $a_{y}<o_{y}$ and $b_{y}>o_{y}, b$ is first.
- Otherwise, a is first if $\operatorname{LT}(a, o, b)<0$.
- What are the degenerate cases?

Spatial Vector Geometry

- Vectors represent positions and directions.
- Vector u has coordinates $u=\left(u_{x}, u_{y}, u_{z}\right)$.
- Inner product: $u \cdot v=u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}$.
- Vector length: $\|u\|=\sqrt{u \cdot u}$.
- Unit vector: $u /\|u\|$.
- Cross product:

$$
u \times v=\left(u_{y} v_{z}-u_{z} v_{y}, u_{z} v_{x}-u_{x} v_{z}, u_{x} v_{y}-u_{y} v_{x}\right)
$$

- Let α be the angle between u and v.
- $u \cdot v=\|u\| \cdot\|v\| \cdot \cos \alpha$.
- $u \times v=(\|u\| \cdot\|v\| \cdot \sin \alpha) n$ with n a unit-vector perpendicular to u and v.

Predicates

- Point d is on the counterclockwise side of triangle $a b c$ if

$$
\operatorname{LT}(a, b, c, d)=\left|\begin{array}{llll}
a_{x} & a_{y} & a_{z} & 1 \\
b_{x} & b_{y} & b_{z} & 1 \\
c_{x} & c_{y} & c_{z} & 1 \\
d_{x} & d_{y} & d_{z} & 1
\end{array}\right|>0
$$

- Point p is outside the sphere through points a, b, c, d with $\mathrm{LT}(a, b, c, d)>0$ if

$$
\left|\begin{array}{lllll}
a_{x} & a_{y} & a_{z} & a \cdot a & 1 \\
b_{x} & b_{y} & b_{z} & b \cdot b & 1 \\
c_{x} & c_{y} & c_{z} & c \cdot c & 1 \\
d_{x} & d_{y} & d_{z} & d \cdot d & 1 \\
p_{x} & p_{y} & p_{z} & p \cdot p & 1
\end{array}\right|>0
$$

