
Path Planning and Minkowski Sums (Chapter 13)

Elisha Sacks



Path Planning

Find a path for a robot between a start configuration and an end
configuration. The robot cannot overlap the obstacle.



Polygonal Robot That Translates

R(0,0)

R(6,4)

reference point

5 10

10

5

I The configuration of R is the position of its reference point.

I The textbook uses the notation R(a, b).

I We will use the notation (a, b) +R.



Configuration Space
work space configuration space

reference point

I Configuration space is the set of configurations.

I Free space is where the robot and the obstacle are disjoint.

I Blocked space is where they intersect.

I Contact space is where they touch.

I The blocked space in the example is light and dark grey.



Blocked Space

I Each obstacle generates a blocked configuration space region.

I Blocked space is the union of these regions.

I At blocked configurations where multiple regions intersect, the
robot intersects the obstacle at multiple points.



Trapezoidal Decomposition

(a) (b)

I Trapezoidal decomposition supports path planning.

I Decompose configuration space then drop the blocked faces.



Roadmap

I The roadmap is a planar graph for path planning.

I The nodes are the centers of the faces and the vertical edges.

I Each face node is linked to its edge nodes.



Path Planning Algorithm

pgoal

pstart

νgoal

∆start ∆goal

νstart

1. Create start and goal nodes pstart and pgoal.

2. Link them to their face nodes vstart and vgoal.

3. Find a path from vstart to vgoal by breadth-first search.

We will discuss shortest paths in Chapter 15.



Minkowski Sum

S1

S2

S1 ⊕S2

I The Minkowski sum is a core function of point sets.
S1 ⊕ S2 = {a + b | a ∈ S1, b ∈ S2}

I The blocked space of a translating robot is a Minkowski sum.



Path Planning with Minkowski Sums

R

P

CP

Theorem The blocked space CP of a translating robot R with
respect to an obstacle P is P ⊕ (−R) where −R = {−r | r ∈ R}.
Proof Let t be a translation. We will show that t +R intersects P
iff t ∈ P ⊕ (−R).

Let q ∈ (t +R) ∩ P. Since q ∈ t +R, q − t ∈ R, so t − q ∈ −R,
so t ∈ q + (−R). Since q ∈ P, t ∈ P ⊕ (−R).

Let t ∈ P ⊕ (−R). There are points p ∈ P and r ∈ R such that
t = p − r , so p = t + r ∈ t +R, so p ∈ (t +R) ∩ P.



Minkowski Sums of Polygons

Let A and B be polygons in general position.

Claim If a + b is a boundary point of A⊕ B, a is a vertex and b is
on an edge or vice versa.

Proof A point a in the interior of A has a neighborhood D ⊂ A, so
a + b is in the interior of D ⊕ b ⊂ A⊕ B. Likewise for b in the
interior of B. If a ∈ e and b ∈ f for edges e and f , e and f are not
parallel by general position, so a + b is in the interior of the open
set e ⊕ f ⊂ A⊕ B.

Claim A⊕ B is a polygon.

Proof For a vertex u and an edge vw , define u + vw as the line
segment [u + v , u + w ]. The boundary of A⊕ B is a subset of the
union of these sums over A and B.



Compatible Features

ve

b a

n

A vertex v of one polygon is compatible with an edge e of the
other polygon if the outward normal n of e is between the outward
normals a and b of the two edges incident on v .

The Minkowski sum boundary is a subset of the sums of the
compatible features.

A circular arc is compatible with an edge if their normals at the
point of contact are equal.



Kinetic Convolution

B

j h

g

i

d f

a

b

k

n

l

m

c e

A

l

an

lm

m

mn

j

n

k

kljk 0

1

2

I The kinetic convolution is the union of the sums of the
compatible pairs of features.

I It defines a subdivision.

I The crossing number of a cell equals the number of
intersections of −A + t and B for any t in the cell.

I The Minkowski sum is the union of the cells with positive
crossing numbers.



Convex Convolution

B

j h

g

i

d f

a

b

k

n

l

m

c e

A

l

an

lm

m

mn

j

n

k

kljk 0

1

2

convex convolution kinetic convolution

I The convex convolution is the subset of the kinetic
convolution where the features are convex.

I It defines a subdivision.

I The Minkowski sum is the union of the cells where −A + t
intersects B for any t in the cell.



Minkowski Sum of Polyhedra

t3

t2

t3t2t1

t1

t3

t2

t3t2t1

t1

I The Minkowski sum of polyhedra is a polyhedron.

I The facets are subsets of feature sums.

I The kinetic and convex convolutions generalize to 3D.



Boundary Representation

cell 2

cell 3

cell 1

d
c

a
b f

g

vw

u

I A shell is a closed surface comprised of facets.

I A cell is an open region bounded by shells.

I Edge loop abcd bounds facet f .

I Facet f bounds cells 2 and 3.



Manifold Surfaces

cell 2

cell 3

cell 1

d
c

a
b f

g

vw

u

I Manifold surfaces
I Every edge bounds a single facet.
I if an edge bounds a facet, so does its twin.

I Are the shells manifold surfaces?

Yes.

I Is the entire subdivision a manifold? No.



Manifold Surfaces

cell 2

cell 3

cell 1

d
c

a
b f

g

vw

u

I Manifold surfaces
I Every edge bounds a single facet.
I if an edge bounds a facet, so does its twin.

I Are the shells manifold surfaces? Yes.

I Is the entire subdivision a manifold?

No.



Manifold Surfaces

cell 2

cell 3

cell 1

d
c

a
b f

g

vw

u

I Manifold surfaces
I Every edge bounds a single facet.
I if an edge bounds a facet, so does its twin.

I Are the shells manifold surfaces? Yes.

I Is the entire subdivision a manifold? No.



Compatible Features

vertex/facet edge/edge

v

u

w

n

convexity



Kinetic and Convex Convolutions

sphere and hollow box Minkowski sum

kinetic convolution convex convolution



Minkowski Sum Algorithm

Input: polyhedra A and B with triangular facets.

1. Construct convex convolution.

2. Intersect facets.

3. Subdivide facets.

4. Triangulate subdivision faces.

5. Group triangles into surfaces.

6. Classify surfaces as outer or inner.

7. Compute surface nesting and form cells.

Output: triangulated boundary of A⊕ B.



Facet Subdivision

w

v1 v2

v3v4

r u
v

s

v5
v6

v7

v8

v9

v10

1

2
3

v1 v2

v3v4

4

w

w

v1 v2

v3v4

r u
v

s

v5
v6

v7

v8

v9

v10

1

2
3

v1 v2

v3v4

4

intersecting facets subdivision of s



3D Path Planning

R(6,4,45)

5 10

10

5

45
◦

R(0,0,0)

I The robot configuration is (x , y , θ).

I Free space construction is much harder: 3D and nonlinear.

I We have done it robustly with ACP.

I Likewise for a polyhedral robot that moves in a plane.



3D free space for curved planar parts

B

A

y

θ

x



3D free space for polyhedron with planar motion

z

x

y

y

θ

x



General Path Planning564 A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels

Fig. 1. A (q-DOF) robot arm consisting of q links with �(nq ) q-fold contacts, and, hence, with free space

complexity �(nq ).

one order of magnitude, i.e., a factor n, below the �(nq) bound (see, e.g., [14] and

[27]). Hence, even in such more specific cases, the theoretical worst-case bounds are

high. Fortunately, in many practical situations the complexity of the free space is much

smaller, as artificially constructed workspaces with, e.g., a very large robot and many

small obstacles, are not encountered very often in real life. When extreme shapes and

sizes of the robot and the obstacles do not occur, high free space complexities tend to be

harder to obtain. Consider for example the motion planning environment of Fig. 2 where

the 6-DOF “spider” robot and the obstacles have roughly the same sizes. While being in

contact with a certain obstacle, the robot is unable to touch more than a constant number

of other obstacles. Then the number of multiple contacts cannot exceed O(n). Hence,

the free space for this robot has complexity O(n) and thus remains far below the free

space complexity obtained with the construction of Fig. 1. The impressive gap between

the �(nq) construction and the O(n) example immediately raises the question what

specific properties of the robot and the obstacles lead to low free space complexities.

What natural mild assumptions would, for example, lead to the relative low obstacle

density of the above example, in which the robot is unable to touch more than a constant

number of obstacles simultaneously?

Van der Stappen et al. [32] show that the combinatorial complexity of the free space is

linear in the number of obstacles if the robot is not too large compared with the obstacles

and if any workspace region intersects no more than a constant number of obstacles that

are at least as large as the region. We refer to the latter property as the low obstacle

density property of the workspace. (Actually, in [32] the linear bound is only proven for

Fig. 2. A 6-DOF robot with few multiple contacts, and, hence, with low free space complexity.

I Robot has constant complexity and q degrees of freedom.

I Obstacles are disjoint and have constant complexity.

I Robot can touch q objects simultaneously.

I These configurations are free space vertices.

I Free space complexity is O(nq) for n obstacles.

I Construction and planning times are somewhat higher.

I There are no practical algorithms for q > 3.



Low Density Obstacles

564 A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels

Fig. 1. A (q-DOF) robot arm consisting of q links with �(nq ) q-fold contacts, and, hence, with free space

complexity �(nq ).

one order of magnitude, i.e., a factor n, below the �(nq) bound (see, e.g., [14] and

[27]). Hence, even in such more specific cases, the theoretical worst-case bounds are

high. Fortunately, in many practical situations the complexity of the free space is much

smaller, as artificially constructed workspaces with, e.g., a very large robot and many

small obstacles, are not encountered very often in real life. When extreme shapes and

sizes of the robot and the obstacles do not occur, high free space complexities tend to be

harder to obtain. Consider for example the motion planning environment of Fig. 2 where

the 6-DOF “spider” robot and the obstacles have roughly the same sizes. While being in

contact with a certain obstacle, the robot is unable to touch more than a constant number

of other obstacles. Then the number of multiple contacts cannot exceed O(n). Hence,

the free space for this robot has complexity O(n) and thus remains far below the free

space complexity obtained with the construction of Fig. 1. The impressive gap between

the �(nq) construction and the O(n) example immediately raises the question what

specific properties of the robot and the obstacles lead to low free space complexities.

What natural mild assumptions would, for example, lead to the relative low obstacle

density of the above example, in which the robot is unable to touch more than a constant

number of obstacles simultaneously?

Van der Stappen et al. [32] show that the combinatorial complexity of the free space is

linear in the number of obstacles if the robot is not too large compared with the obstacles

and if any workspace region intersects no more than a constant number of obstacles that

are at least as large as the region. We refer to the latter property as the low obstacle

density property of the workspace. (Actually, in [32] the linear bound is only proven for

Fig. 2. A 6-DOF robot with few multiple contacts, and, hence, with low free space complexity.
Van der Stappen et al, Motion Planning in Environments with Low
Obstacle Density, Discrete and Computational Geometry,
20(4):561–587, 1998.

Theorem 2.4 The free space complexity is O(n) for low density
obstacles.

Theorem 4.5 The complexity of low density motion planning is
O(n log n) for a robot of size bρ with b a constant and ρ the
minimum obstacle size.



RRT Path Planning

I Build a rapidly exploring random tree (RRT) from a start
configuration.

I The vertices and the edges are in free space.

I Find a path from s to g by alternately expanding their trees
and checking if the segment between their closest vertices is
in free space.



RRT with Obstacles



RRT Algorithm

Input: Initial configuration qinit, number of vertices k , distance v .
1. Create a graph G with root qinit.
2. Repeat k times

3. Set qrand to a random configuration.
4. Set qnearest to the vertex of G closest to qrand.
5. Set qnew at distance v from qnearest on qnearestqrand.
6. If qnew is free, add it to G and connect it to qnearest.



Evaluation of RRT Planning

I RRT is far simpler than free space construction.

I One algorithm applies to all types of problems.

I RRT performs well when the robot has ample clearance.

I RRT performs poorly on long narrow corridors.

I There are many extensions that try to fix this problem.


