Path Planning and Minkowski Sums (Chapter 13)

Elisha Sacks

Path Planning

Find a path for a robot between a start configuration and an end configuration. The robot cannot overlap the obstacle.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Polygonal Robot That Translates

The configuration of R is the position of its reference point.

(日) (四) (日) (日) (日)

- The textbook uses the notation $\mathcal{R}(a, b)$.
- We will use the notation $(a, b) + \mathcal{R}$.

Configuration Space

work space configuration space reference point

- Configuration space is the set of configurations.
- Free space is where the robot and the obstacle are disjoint.
- Blocked space is where they intersect.
- Contact space is where they touch.
- The blocked space in the example is light and dark grey.

Blocked Space

- Each obstacle generates a blocked configuration space region.
- Blocked space is the union of these regions.
- At blocked configurations where multiple regions intersect, the robot intersects the obstacle at multiple points.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Trapezoidal Decomposition

- Trapezoidal decomposition supports path planning.
- Decompose configuration space then drop the blocked faces.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Roadmap

- The roadmap is a planar graph for path planning.
- The nodes are the centers of the faces and the vertical edges.
- Each face node is linked to its edge nodes.

Path Planning Algorithm

- 1. Create start and goal nodes p_{start} and p_{goal} .
- 2. Link them to their face nodes v_{start} and v_{goal} .

3. Find a path from $v_{\rm start}$ to $v_{\rm goal}$ by breadth-first search. We will discuss shortest paths in Chapter 15.

Minkowski Sum

- ► The Minkowski sum is a core function of point sets. $S_1 \oplus S_2 = \{a + b \mid a \in S_1, b \in S_2\}$
- The blocked space of a translating robot is a Minkowski sum.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Path Planning with Minkowski Sums

Theorem The blocked space CP of a translating robot \mathcal{R} with respect to an obstacle \mathcal{P} is $\mathcal{P} \oplus (-\mathcal{R})$ where $-\mathcal{R} = \{-r \mid r \in \mathcal{R}\}$. *Proof* Let *t* be a translation. We will show that $t + \mathcal{R}$ intersects \mathcal{P} iff $t \in \mathcal{P} \oplus (-\mathcal{R})$.

Let $q \in (t + \mathcal{R}) \cap \mathcal{P}$. Since $q \in t + \mathcal{R}$, $q - t \in \mathcal{R}$, so $t - q \in -\mathcal{R}$, so $t \in q + (-\mathcal{R})$. Since $q \in \mathcal{P}$, $t \in \mathcal{P} \oplus (-\mathcal{R})$. Let $t \in \mathcal{P} \oplus (-\mathcal{R})$. There are points $p \in \mathcal{P}$ and $r \in \mathcal{R}$ such that t = p - r, so $p = t + r \in t + \mathcal{R}$, so $p \in (t + \mathcal{R}) \cap \mathcal{P}$.

Minkowski Sums of Polygons

Let A and B be polygons in general position.

Claim If a + b is a boundary point of $A \oplus B$, *a* is a vertex and *b* is on an edge or vice versa.

Proof A point *a* in the interior of *A* has a neighborhood $D \subset A$, so a + b is in the interior of $D \oplus b \subset A \oplus B$. Likewise for *b* in the interior of *B*. If $a \in e$ and $b \in f$ for edges *e* and *f*, *e* and *f* are not parallel by general position, so a + b is in the interior of the open set $e \oplus f \subset A \oplus B$.

Claim $A \oplus B$ is a polygon.

Proof For a vertex u and an edge vw, define u + vw as the line segment [u + v, u + w]. The boundary of $A \oplus B$ is a subset of the union of these sums over A and B.

Compatible Features

A vertex v of one polygon is compatible with an edge e of the other polygon if the outward normal n of e is between the outward normals a and b of the two edges incident on v.

The Minkowski sum boundary is a subset of the sums of the compatible features.

A circular arc is compatible with an edge if their normals at the point of contact are equal.

Kinetic Convolution

- The kinetic convolution is the union of the sums of the compatible pairs of features.
- It defines a subdivision.
- ► The crossing number of a cell equals the number of intersections of −A + t and B for any t in the cell.
- The Minkowski sum is the union of the cells with positive crossing numbers.

Convex Convolution

- The convex convolution is the subset of the kinetic convolution where the features are convex.
- It defines a subdivision.
- The Minkowski sum is the union of the cells where -A + t intersects *B* for any *t* in the cell.

Minkowski Sum of Polyhedra

- The Minkowski sum of polyhedra is a polyhedron.
- The facets are subsets of feature sums.
- The kinetic and convex convolutions generalize to 3D.

Boundary Representation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- A shell is a closed surface comprised of facets.
- A cell is an open region bounded by shells.
- Edge loop *abcd* bounds facet *f*.
- Facet *f* bounds cells 2 and 3.

Manifold Surfaces

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Manifold surfaces

- Every edge bounds a single facet.
- if an edge bounds a facet, so does its twin.
- Are the shells manifold surfaces?

Manifold Surfaces

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Manifold surfaces

- Every edge bounds a single facet.
- if an edge bounds a facet, so does its twin.
- Are the shells manifold surfaces? Yes.
- Is the entire subdivision a manifold?

Manifold Surfaces

Manifold surfaces

- Every edge bounds a single facet.
- if an edge bounds a facet, so does its twin.
- Are the shells manifold surfaces? Yes.

Compatible Features

Kinetic and Convex Convolutions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Minkowski Sum Algorithm

Input: polyhedra A and B with triangular facets.

- 1. Construct convex convolution.
- 2. Intersect facets.
- 3. Subdivide facets.
- 4. Triangulate subdivision faces.
- 5. Group triangles into surfaces.
- 6. Classify surfaces as outer or inner.
- 7. Compute surface nesting and form cells.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Output: triangulated boundary of $A \oplus B$.

Facet Subdivision

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

3D Path Planning

- The robot configuration is (x, y, θ) .
- Free space construction is much harder: 3D and nonlinear.
- We have done it robustly with ACP.
- Likewise for a polyhedral robot that moves in a plane.

3D free space for curved planar parts

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

3D free space for polyhedron with planar motion

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

General Path Planning

- Robot has constant complexity and q degrees of freedom.
- Obstacles are disjoint and have constant complexity.
- Robot can touch q objects simultaneously.
- These configurations are free space vertices.
- Free space complexity is $O(n^q)$ for *n* obstacles.
- Construction and planning times are somewhat higher.
- There are no practical algorithms for q > 3.

Low Density Obstacles

Van der Stappen et al, Motion Planning in Environments with Low Obstacle Density, *Discrete and Computational Geometry*, 20(4):561–587, 1998.

Theorem 2.4 The free space complexity is O(n) for low density obstacles.

Theorem 4.5 The complexity of low density motion planning is $O(n \log n)$ for a robot of size $b\rho$ with b a constant and ρ the minimum obstacle size.

RRT Path Planning

- Build a rapidly exploring random tree (RRT) from a start configuration.
- ▶ The vertices and the edges are in free space.
- Find a path from s to g by alternately expanding their trees and checking if the segment between their closest vertices is in free space.

RRT with Obstacles

RRT Algorithm

Input: Initial configuration q_{init} , number of vertices k, distance v.

- 1. Create a graph G with root q_{init} .
- 2. Repeat k times
 - 3. Set q_{rand} to a random configuration.
 - 4. Set q_{nearest} to the vertex of G closest to q_{rand} .
 - 5. Set q_{new} at distance v from q_{nearest} on $q_{\text{nearest}}q_{\text{rand}}$.
 - 6. If q_{new} is free, add it to G and connect it to q_{nearest} .

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Evaluation of RRT Planning

- RRT is far simpler than free space construction.
- One algorithm applies to all types of problems.
- RRT performs well when the robot has ample clearance.
- RRT performs poorly on long narrow corridors.
- There are *many* extensions that try to fix this problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00