Path Planning and Minkowski Sums (Chapter 13)
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Path Planning

Find a path for a robot between a start configuration and an end
configuration. The robot cannot overlap the obstacle.



Polygonal Robot That Translates
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reference point

» The configuration of R is the position of its reference point.
» The textbook uses the notation R(a, b).
» We will use the notation (a, b) + R.



Configuration Space

work space configuration space

reference point

Configuration space is the set of configurations.
Free space is where the robot and the obstacle are disjoint.

>

>

P Blocked space is where they intersect.
> Contact space is where they touch.

>

The blocked space in the example is light and dark grey.



Blocked Space

» Each obstacle generates a blocked configuration space region.
» Blocked space is the union of these regions.

» At blocked configurations where multiple regions intersect, the
robot intersects the obstacle at multiple points.



Trapezoidal Decomposition
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P Trapezoidal decomposition supports path planning.

» Decompose configuration space then drop the blocked faces.



Roadmap

» The roadmap is a planar graph for path planning.
» The nodes are the centers of the faces and the vertical edges.

» Each face node is linked to its edge nodes.



Path Planning Algorithm

Astart

Pstart

1. Create start and goal nodes pstart and pgoal-
2. Link them to their face nodes vstart and vgoal-
3. Find a path from vgart to Vgoa by breadth-first search.

We will discuss shortest paths in Chapter 15.



Minkowski Sum
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» The Minkowski sum is a core function of point sets.
51@52:{a+b|a651,b652}
» The blocked space of a translating robot is a Minkowski sum.



Path Planning with Minkowski Sums
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Theorem The blocked space CP of a translating robot R with
respect to an obstacle P is P @ (—R) where —R = {—r | r € R}.
Proof Let t be a translation. We will show that t + R intersects P
iff t € P& (—R).

Letge (t+R)NP.Sinceqget+R,g—teR, sot—qe —R,
soteqg+(—R). Sinceqe P, tePd(—R).

Let t € P @ (—R). There are points p € P and r € R such that
t=p—r,sop=t+ret+R,sope(t+R)NP.



Minkowski Sums of Polygons

Let A and B be polygons in general position.

Claim If a+ b is a boundary point of A® B, ais a vertex and b is
on an edge or vice versa.

Proof A point a in the interior of A has a neighborhood D C A, so
a—+ bis in the interior of D@ b C A& B. Likewise for b in the
interior of B. If a € e and b € f for edges e and f, e and f are not
parallel by general position, so a+ b is in the interior of the open
setedf C A B.

Claim A& B is a polygon.

Proof For a vertex u and an edge vw, define u+ vw as the line
segment [u + v, u + w]. The boundary of A® B is a subset of the
union of these sums over A and B.



Compatible Features

A vertex v of one polygon is compatible with an edge e of the
other polygon if the outward normal n of e is between the outward
normals a and b of the two edges incident on v.

The Minkowski sum boundary is a subset of the sums of the
compatible features.

A circular arc is compatible with an edge if their normals at the
point of contact are equal.



Kinetic Convolution
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» The kinetic convolution is the union of the sums of the
compatible pairs of features.

» It defines a subdivision.

» The crossing number of a cell equals the number of
intersections of —A + t and B for any t in the cell.

» The Minkowski sum is the union of the cells with positive
crossing numbers.



Convex Convolution
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convex convolution kinetic convolution

» The convex convolution is the subset of the kinetic
convolution where the features are convex.

» [t defines a subdivision.

» The Minkowski sum is the union of the cells where —A + ¢t
intersects B for any t in the cell.



Minkowski Sum of Polyhedra
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» The Minkowski sum of polyhedra is a polyhedron.
» The facets are subsets of feature sums.

» The kinetic and convex convolutions generalize to 3D.



Boundary Representation

» A shell is a closed surface comprised of facets.

> A cell is an open region bounded by shells.
» Edge loop abcd bounds facet f.
» Facet f bounds cells 2 and 3.



Manifold Surfaces

» Manifold surfaces

» Every edge bounds a single facet.

» if an edge bounds a facet, so does its twin.
» Are the shells manifold surfaces?




Manifold Surfaces

» Manifold surfaces

» Every edge bounds a single facet.

» if an edge bounds a facet, so does its twin.
» Are the shells manifold surfaces? Yes.
» |s the entire subdivision a manifold?
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Manifold Surfaces

» Manifold surfaces

» Every edge bounds a single facet.

» if an edge bounds a facet, so does its twin.
» Are the shells manifold surfaces? Yes.

» |s the entire subdivision a manifold? No.
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Compatible Features

vertex/facet

edge/edge

convexity



Kinetic and Convex Convolutions
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sphere and hollow box

Minkowski sum
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convex convolution
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Minkowski Sum Algorithm

Input: polyhedra A and B with triangular facets.

1.

I

7.

Construct convex convolution.

Intersect facets.

Subdivide facets.

Triangulate subdivision faces.

Group triangles into surfaces.

Classify surfaces as outer or inner.
Compute surface nesting and form cells.

Output: triangulated boundary of A® B.



Facet Subdivision
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intersecting facets subdivision of s



3D Path Planning
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» The robot configuration is (x, y, 6).
» Free space construction is much harder: 3D and nonlinear.
» We have done it robustly with ACP.

> Likewise for a polyhedral robot that moves in a plane.



3D free space for curved planar parts




3D free space for polyhedron with planar motion

~e— D

=] 5 = = £ DA



General Path Planning
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Robot has constant complexity and g degrees of freedom.
Obstacles are disjoint and have constant complexity.
Robot can touch g objects simultaneously.
These configurations are free space vertices.
Free space complexity is O(n9) for n obstacles.
Construction and planning times are somewhat higher.

There are no practical algorithms for g > 3.



Low Density Obstacles

Van der Stappen et al, Motion Planning in Environments with Low
Obstacle Density, Discrete and Computational Geometry,
20(4):561-587, 1998.

Theorem 2.4 The free space complexity is O(n) for low density
obstacles.

Theorem 4.5 The complexity of low density motion planning is
O(nlog n) for a robot of size bp with b a constant and p the
minimum obstacle size.



RRT Path Planning

45 iterstions 390 iterations

» Build a rapidly exploring random tree (RRT) from a start
configuration.
» The vertices and the edges are in free space.

» Find a path from s to g by alternately expanding their trees
and checking if the segment between their closest vertices is
in free space.



RRT with Obstacles




RRT Algorithm
qrand

\\ /“‘ qnew

e
9 — \ qnearest

Input: Initial configuration ginit, number of vertices k, distance v.
1. Create a graph G with root ginit.
2. Repeat k times

3. Set @ang to a random configuration.

4. Set Qpearest tO the vertex of G closest to Grang-

5. Set gnew at distance v from Guearest ON Gnearest Grand-

6. If gnew is free, add it to G and connect it t0 Gnearest-



Evaluation of RRT Planning

RRT is far simpler than free space construction.

One algorithm applies to all types of problems.

>
>
» RRT performs well when the robot has ample clearance.
» RRT performs poorly on long narrow corridors.

>

There are many extensions that try to fix this problem.



