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Mesh Types

I Dimension: area in 2D, surface in 3D, volume in 3D.

I Domain: polygonal, polyhedral, curved.

I Element: triangle, tetrahedron, quadrilateral, hexahedron.

I Structured: regular grid with indexing.

I Unstructured: elements comprise a general subdivision.

Our Topic

Unstructured triangle meshing of polygonal domains

I Structured meshes are easy to construct and of limited use.

I Triangles are flexible and simple.

I Curved domains are usually approximated with polygons.

I 3D is very important, but beyond our scope.



Properties

doesn’t respect input

component

not conforming

not well-shaped

I Conformity: triangles meet solely at shared edges.

I Respects input: the input is a union of triangles.

I Well-shaped: no small or large angles.

I Graded: triangle size adapts to domain complexity.

I Fewest triangles while respecting maximum triangle size.



Quadtree Meshing (chapter 14)

I Domain: polygonal region with angles multiples of 45◦.

I Grid: unstructured, graded triangle mesh.

I Good algorithm for limited domain.

I Demonstrates interesting quadtree algorithms.



Quadtrees

NW SWNE SE

1. Start with a square that contains the elements.

2. Split the square in four at its middle x and y values.

3. Intersect the elements with the squares to obtain fragments.

4. Assign each fragment to its square.

5. Recurse while the square contains too many fragments.



Terminology

corner

edge

side

σNW

σSW σSE

σNE

xmid

ymid

I side: a horizontal or vertical side of a square.

I corner: a corner of a square.

I edge: a subset of a side bounded by corners of other squares.

I σ(v): the square represented by quadtree node v .

I σNW (v) etc: the squares of the children of v .



Quadtrees versus Uniform Grids

I Quadtrees store data compactly by adapting to the data.

I Uniform grids are larger, simpler, and sometimes faster.



Quadtree Complexity

depth = 3
s

side length = s/8

Lemma 14.1 The depth of a quadtree of points with a minimum
separation of c and an s-by-s bounding box is log(s/c) + 1.5.
Proof The squares at depth d have side length s/2d .

Theorem 14.2 The quadtree construction time for n points is
O(dn) with d its depth.
Proof There are n points at each level of the quadtree and the
cost per point is constant.



Compressed Quadtrees

I The quadtree size depends on the distribution of the elements.

I When the elements are clustered, the quadtree contains many
nodes with three empty children.

I Compressed quadtrees omit these nodes.

I Their depth for n points is O(log n).

I See the chapter 14 notes for references.



Neighbors

σ(ν)

north-neighbor of parent(ν)

Algorithm NORTHNEIGHBOR(ν ,T)

Input. A node ν in a quadtree T.

Output. The deepest node ν
′ whose depth is at most the depth of ν such that σ(ν ′) is a north-

neighbor of σ(ν), and nil if there is no such node.

1. if ν = root(T) then return nil

2. if ν = SW-child of parent(ν) then return NW-child of parent(ν)
3. if ν = SE-child of parent(ν) then return NE-child of parent(ν)
4. µ ←NORTHNEIGHBOR(parent(ν),T)

5. if µ = nil or µ is a leaf

6. then return µ

7. else if ν = NW-child of parent(ν)
8. then return SW-child of µ

9. else return SE-child of µ
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Balance

I A quadtree for clustered points is unbalanced.

I Large and small squares share edges.

I This is undesirable in meshing and in other applications.

I The tree can be balanced efficiently.



Balancing Algorithm

❜�✁�✂✄☎✂✆

b

c a

The balancing algorithm splits every leaf that is more than twice as
large as one of its neighbors.

A leaf a has a west neighbor b with a northeast or southest child c
that is not a leaf. Likewise for the other three sides of a.



Balancing Algorithm

1. Place the leaves of the quadtree in a list l .

2. While l is not empty

2.1 Remove the first leaf µ from l .
2.2 If µ needs to be split

2.2.1 Split µ and move its point to the containing child.
2.2.2 Add the children of µ and the neighbors of µ to l .



Balancing Complexity

σ

σ
′

Theorem 14.4 A quadtree T with m nodes and depth d yields a
balanced quadtree with O(m) nodes in O(dm) time.
Proof

I Claim: If a square is split, it has a same-size neighbor in T .

I There are m squares in T each with at most 8 neighbors.

I A split creates 4 nodes.

I There are at most 32m nodes in the balanced quadtree.

I The cost of creating a node is O(d) for neighbor finding.



Proof of Claim by Contradiction

σ

σ
′

Let σ be the smallest square that is split such that all its same-size
neighbors are new (result from splits).

σ has a neighbor µ less than half its size.

Let σ′ be the square that contains µ and is half the size of σ. σ′ is
new because it is contained in a same-size neighbor of σ.

The same-size neighbors of σ′ are new because they are contained
in σ or in the same-size neighbors of σ.

This contradicts the definition of σ.



Quadtree Meshing

0 U

U

0

domain need to split done splitting

The input is a subdivision of a square U = [0, 2j ]× [0, 2j ]. The
vertices have integer coordinates. The edges have slopes of ±1.
Algorithm

1. Construct a quadtree whose leaf squares are unit size or are
disjoint from the input.

2. Balance the quadtree.

3. Split the leaf squares into triangles.



Square Triangulation

diagonal good shape bad shape

Cases for splitting a leaf into triangles.

1. A diagonal is an edge.
Split along the diagonal.

2. The interiors of the sides are free of vertices.
Split along either diagonal.

3. The interiors of some sides contain vertices.
Connect the side vertices to a new vertex at the center.
The triangle shapes are good because of balancing.



Meshing Complexity

Theorem 14.5 The mesh has O(P logU) triangles with P the sum
of the input edge lengths. The construction time is O(P log2 U).

The proof is straightforward.



Delaunay RefinementTwo-dimensional Delaunay triangulations 47

Figure 2.12: The Delaunay triangulation (upper right) may omit domain edges and contain

skinny triangles. A Steiner Delaunay triangulation (lower left) can �x these faults by intro-

ducing new vertices. A constrained Delaunay triangulation (lower right) �xes the �rst fault

without introducing new vertices.

f g

gf

Figure 2.13: A two-dimensional piecewise linear complex and its constrained Delaunay

triangulation. Each polygon may have holes, slits, and vertices in its interior.

2.10.1 Piecewise linear complexes and their triangulations

The domain over which a CDT is de�ned (and the input to a CDT construction algorithm) is

not just a set of points; it is a complex composed of points, edges, and polygons, illustrated

in Figure 2.13. The purpose of the edges is to dictate that triangulations of the complex must

contain those edges. The purpose of the polygons is to specify the region to be triangulated.

The polygons are linear 2-cells (recall De�nition 1.7), which are not necessarily convex and

may have holes.

De�nition 2.8 (piecewise linear complex). In the plane, a piecewise linear complex (PLC)

P is a �nite set of linear cells�vertices, edges, and polygons�that satis�es the following

properties.

• The vertices and edges in P form a simplicial complex. That is, P contains both

vertices of every edge in P, and the relative interior of an edge in P intersects no

vertex in P nor any other edge in P.

• For each polygon f in P, the boundary of f is a union of edges in P.

• If two polygons in P intersect, their intersection is a union of edges and vertices in

P.

Cheng, S., Dey, T. K., & Shewchuk, J. (2012). Delaunay mesh generation : Algorithms and mathematical analysis. CRC Press LLC.
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I Goal: construct a Steiner Delaunay triangulation of a domain.

I We will discuss Ruppert’s algorithm for a polygonal domain.

I Cheng provides more information on Delaunay refinement.



Example Mesh124 Delaunay Mesh Generation

Figure 6.1: Meshing the Columbus skyline: a PLC and a Delaunay mesh thereof with no

angle less than 28◦, produced by Ruppert✁s Delaunay re�nement algorithm.

6.1 A generic Delaunay re�nement algorithm

The following generic Delaunay re�nement method meshes a complex P.

DelaunayRefinement(P)

1. Choose a vertex set S ⊂ |P|.

2. Compute Del S .

3. If Del S fails to satisfy a property guaranteeing its geometric or topolog-

ical conformity to P, choose a point c ∈ |P| at or near the violation, insert

c into S , update Del S , and repeat Step 3.

4. If an element τ ∈ Del S is poorly shaped or too large, choose a point

c ∈ |P| in or near τ✁s circumball, insert c into S , update Del S , and go to

Step 3.

5. Return the mesh {σ ∈ Del S : σ ⊆ |P|}.

The �rst step depends on the type of complex. For a piecewise linear domain, S is the set

of vertices inP. For a smooth or piecewise smooth domain, points are chosen carefully from

Cheng, Siu-Wing, et al. Delaunay Mesh Generation : Algorithms and Mathematical Analysis, CRC Press LLC, 2012. ProQuest Ebook Central,
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Created from purdue on 2021-03-08 06:31:30.

C
o

p
y
ri
g

h
t 

©
 2

0
1

2
. 

C
R

C
 P

re
s
s
 L

L
C

. 
A

ll 
ri
g

h
ts

 r
e

s
e

rv
e

d
.

The input is the bounded faces of a subdivision with linear edges.



Quality Metric
26 Delaunay Mesh Generation

θ + φ

R

c
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θ
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φ
ϕ

�min yx

R

Figure 1.18: Relationships between the circumradius R, shortest edge �min, and smallest

angle θ.

triangle or tetrahedron, and a value at the opposite extreme for a degenerate element✁

a triangle whose vertices are collinear, or a tetrahedron whose vertices are coplanar. In

this book, the most important quality measure is the radius-edge ratio, because Delaunay

re�nement algorithms naturally tend to improve it.

De�nition 1.21 (radius-edge ratio). The radius-edge ratio of a simplex τ is R/�min, where

R is τ✂s circumradius and �min is the length of its shortest edge.

We would like the radius-edge ratio to be as small as possible; it ranges from∞ for most

degenerate simplices down to 1/
√
3 � 0.577 for an equilateral triangle or

√
6/4 � 0.612

for an equilateral tetrahedron. But is it a good estimate of element quality?

In two dimensions, the answer is yes. A triangle✂s radius-edge ratio is related to its

smallest angle θmin by the formula

R

�min
=

1

2 sin θmin
.

Figure 1.18 illustrates how this identity is derived for a triangle xyz with circumcenter c.

Observe that the triangles ycz and xcz are isosceles, so their apex angles are ∠ycz = 180◦−2φ

and ∠xcz = 180◦ − 2φ − 2θ. Therefore, ϕ = 2θ and �min = 2R sin θ. This reasoning holds

even if φ is negative.

The smaller a triangle✂s radius-edge ratio, the larger its smallest angle. The angles of a

triangle sum to 180◦, so the triangle✂s largest angle is at most 180◦ − 2θmin; hence an upper

bound on the radius-edge ratio places bounds on both the smallest and largest angles.

In three dimensions, however, the radius-edge ratio is a �awed measure. It screens

out all the tetrahedra in Figure 1.17 except slivers. A degenerate sliver can have a radius-

edge ratio as small as 1/
√
2 � 0.707, which is not far from the 0.612 of an equilateral

tetrahedron. Delaunay re�nement algorithms are guaranteed to remove all tetrahedra with

large radius-edge ratios, but they do not promise to remove all slivers.

Cheng, Siu-Wing, et al. Delaunay Mesh Generation : Algorithms and Mathematical Analysis, CRC Press LLC, 2012. ProQuest Ebook Central,
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I The triangle quality metric is ρ = R/`min with R the radius of
the circumcircle and `min the length of the shortest edge.

I The smallest angle is θ = arcsin(1/2ρ).
I ∠ycz = 180− 2φ because ycz is isoceles.
I ∠xcz = 180− 2(θ + φ) because xcz is isoceles.
I ϕ = ∠ycx = ∠ycz − ∠xcz = 2θ
I sin θ = sinϕ/2 = `min/2R = 1/2ρ



Quality of Ruppert’s Algorithm

I Ruppert’s algorithm splits triangles with ρ > ρ.

I It provably converges for ρ ≥
√

2.

I This yields minimum and maximum angles of 21◦ and 138◦.

I Angles of 33◦ and 134◦ are usually achievable in practice.



Ruppert’s Algorithm

1. Construct the Delaunay triangulation of the vertices.

2. Split the domain edges that are missing from the triangulation.

3. Split the bad triangles in the domain.



Step 2: Split Encroached Edges
Delaunay re�nement in the plane 127

Figure 6.3: Segments (bold) are split until no subsegment is encroached.

Consider a subsegment e that is absent from Del S , as at upper right in Figure 2.12.

By Proposition 2.10, Del S contains every strongly Delaunay edge, so e is not strongly

Delaunay, and some vertex v ∈ S must lie in e✁s closed diametric disk besides e✁s vertices.

De�nition 6.1 (encroachment). A vertex v that lies in the closed diametric ball of a sub-

segment e but is not a vertex of e is said to encroach upon e.

The following procedure SplitSubsegment treats an encroached subsegment by insert-

ing a new vertex at its midpoint, thereby dividing it into two subsegments of half the length.

All encroached subsegments are treated this way, whether they are present in Del S or not,

as illustrated in Figure 6.3. The recovery of a boundary segment by repeatedly inserting

vertices on its missing subsegments is sometimes called stitching.

SplitSubsegment(e, S , E)

1. Insert the midpoint of e into S .

2. Remove e from E and add its two halves to E.

We will see at the end of this section that if no subsegment is encroached, every trian-

gle✁s circumcenter lies in the domain |P|, so we can remove any skinny triangle by inserting

a vertex at its circumcenter. However, this triangle re�nement rule still has a serious �aw:

a vertex inserted at a circumcenter can lie arbitrarily close to a segment, thereby forcing

the Delaunay re�nement algorithm to generate extremely small triangles in the region be-

tween the vertex and segment. We sidestep this hazard with a more complicated rule for

treating skinny triangles that prevents vertices from getting dangerously close to segments,

at the cost of weakening the angle bounds from 30◦ and 120◦ to approximately 20.7◦ and

138.6◦. If a triangle τ has a radius-edge ratio greater than ρ̄, we consider inserting its cir-

cumcenter c, as before. But if c encroaches upon a subsegment e, we reject c and split e

instead.

SplitTriangle(τ, S , E)

1. Let c be the circumcenter of τ.

2. If c encroaches upon some subsegment e ∈ E, call SplitSubsegment(e, S , E).

Otherwise, insert c into S .
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I A vertex in the diametric circle of an edge encroaches on it.

I If vertices a and b have an empty circle, ab is Delaunay.

I Step 2 bisects the encroached input edges until none remain.

I The resulting Delaunay triangulation contains the subedges.



Circumcenters in Domain

Delaunay re�nement in the plane 129

p

(a) (b) (c)
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(d) (e) (f)

Figure 6.4: The algorithm DelTriPLC in action. (a) The input PLC. (b) The Delaunay

triangulation of the input vertices. (c) The bottom edge is encroached, so it is split at its

midpoint p. (d) After all the encroached subsegments are split, the shaded triangle has poor

quality, so the algorithm considers inserting its circumcenter c. (e) Because c encroaches

upon the segment ab, the algorithm does not insert c; instead it splits ab. (f) The �nal mesh.
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Figure 6.5: Be includes the portion of τ✁s circumdisk Bτ on the same side of e as p.

6.3 Implementation and running time

We offer some recommendations on how to implement Ruppert✁s algorithm efficiently.

First, an implementation should maintain a queue of skinny and oversized triangles and
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Proposition 6.2 If no edge is encroached, the circumcenter of
every triangle is in the domain D.

Proof Suppose a triangle τ has a circumcenter c outside D. Let p
be a point in τ . An edge e on the boundary of D intersects pc.

The interior of the circumdisk Bτ of τ intersects e, since pc is in
Bτ , but excludes its endpoints, since τ is Delaunay.



Circumcenters in Domain (continued)

Delaunay re�nement in the plane 129

p

(a) (b) (c)
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Figure 6.4: The algorithm DelTriPLC in action. (a) The input PLC. (b) The Delaunay

triangulation of the input vertices. (c) The bottom edge is encroached, so it is split at its

midpoint p. (d) After all the encroached subsegments are split, the shaded triangle has poor

quality, so the algorithm considers inserting its circumcenter c. (e) Because c encroaches

upon the segment ab, the algorithm does not insert c; instead it splits ab. (f) The �nal mesh.
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Figure 6.5: Be includes the portion of τ✁s circumdisk Bτ on the same side of e as p.

6.3 Implementation and running time

We offer some recommendations on how to implement Ruppert✁s algorithm efficiently.

First, an implementation should maintain a queue of skinny and oversized triangles and
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Let H be the half plane of e that contains p. Since Bτ is empty, e
splits it into two regions with τ ⊂ Bτ ∩ H ⊂ D.

Let Be be the diametric disk of e. Since c is outside H,
Bτ ∩ H ⊂ Be .

Hence, τ ⊂ Be . At most two vertices are incident on e, so one
vertex encroaches on it.



Step 3: Split Bad TrianglesDelaunay re�nement in the plane 125

Figure 6.2: Inserting the circumcenter of a triangle whose radius-edge ratio exceeds 1.

Every new edge adjoins the circumcenter and is at least as long as the circumradius of the

skinny triangle, which is at least as long as the shortest edge of the skinny triangle.

the surfaces to form an initial vertex set. Step 2 constructs an initial Delaunay triangulation.

Some algorithms maintain a constrained Delaunay triangulation instead; see Section 6.7.

Steps 3 and 4 re�ne the triangulation by calling a vertex insertion algorithm such as the

Bowyer✁Watson algorithm. The properties enforced by Step 3 can encompass conforming

to the domain boundary, capturing the domain topology, and approximating curved domain

geometry with sufficient accuracy. Step 5 obtains a mesh of P by deleting the extraneous

simplices that are not included in |P|.

DelaunayRefinement terminates only when the mesh has the desired geometric proper-

ties and element shapes and sizes. The algorithm designer✂s burden is to choose the proper-

ties to enforce, choose vertices to insert, and prove that the mesh will eventually satisfy the

properties, so the algorithm will terminate. Counterintuitive as it may seem, the proof usu-

ally proceeds by �rst showing that the algorithm must terminate, and hence the properties

must be satis�ed and the elements must have high quality.

The main insight behind all Delaunay re�nement algorithms is that they constrain how

close together two vertices can be, and thus constrain how short an edge can be. Consider

inserting a new vertex at the circumcenter of an element whose radius-edge ratio is one or

greater, as illustrated in Figure 6.2. Because a Delaunay simplex has an empty circumball,

the distance from the new vertex to any other vertex is at least as great as the circumball✂s

radius, which is at least as great as the simplex✂s shortest edge. Therefore, the new vertex

cannot participate in an edge shorter than the shortest edge already existing. This explains

why circumcenters are excellent places to put new vertices, why the radius-edge ratio is

the quality measure naturally optimized by Delaunay re�nement algorithms, and why these

algorithms must terminate: they eventually run out of places to put new vertices. The fol-

lowing lemma formalizes the last idea.

Lemma 6.1 (Packing Lemma). Let D ⊂ Rd be a bounded domain. Let S ⊂ D be a point set

and λ > 0 a scalar constant such that for every two distinct points u and v in S , d(u, v) ≥ λ.

Then there is a constant ξ depending solely on D and λ such that |S | ≤ ξ.

Proof. Consider the point set Dλ/2 = {x ∈ R
d : d(x,D) ≤ λ/2}, known as the Minkowski

sum of D with a ball of radius λ/2. Dλ/2 is bounded, as D is bounded. Every Euclidean

d-ball having a center in S and radius λ/2 is included in Dλ/2. Because every pair of points

in S is separated by a distance of at least λ, these balls have disjoint interiors, and we call
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I A triangle with ρ > ρ (or a large triangle) is bad.

I Step 2 ensures that the circumcenter o is in the domain.

I If o encroaches on an edge, the edge is split.

I Otherwise, o is added to the vertex set.

I The bad triangle vanishes because its circumcircle contains o.

I The new edges are longer than the shortest edge length `min.
Their length is at least the circumradius R = ρ`min > `min.



Meshing a Hollow RectangleDelaunay re�nement in the plane 129
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Figure 6.4: The algorithm DelTriPLC in action. (a) The input PLC. (b) The Delaunay

triangulation of the input vertices. (c) The bottom edge is encroached, so it is split at its

midpoint p. (d) After all the encroached subsegments are split, the shaded triangle has poor

quality, so the algorithm considers inserting its circumcenter c. (e) Because c encroaches

upon the segment ab, the algorithm does not insert c; instead it splits ab. (f) The �nal mesh.
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Figure 6.5: Be includes the portion of τ✁s circumdisk Bτ on the same side of e as p.

6.3 Implementation and running time

We offer some recommendations on how to implement Ruppert✁s algorithm efficiently.

First, an implementation should maintain a queue of skinny and oversized triangles and
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Small Angles

I Ruppert’s original algorithm forbids acute interior angles.

I Convergence fails because of ping-pong encroachment and
seditious edges.

I These are handled by two simple extensions.

I The maximal angle is as before.

I The minimum is as before, except at small input angles.



Ping-Pong Encroachment
142 Delaunay Mesh Generation

u
w

a

x

v

Figure 6.12: Ping-pong encroachment caused by a small input angle. Vertex v encroaches

upon au, which is split at w. Vertex w encroaches upon av, which is split at x, which

encroaches upon aw, and so on.

because area(τ)/�max(τ)
2
= h(τ)/(2�max(τ)) attains its maximum possible value of

√
3/4

for an equilateral triangle. The summation is the number of triangles in T, so the claim

follows. �

Propositions 6.8 and 6.12 together establish the size optimality of meshes produced by

DelTriPLC, formally stated in the following theorem.

Theorem 6.13. Let P be a PLC in the plane such that |P| is convex and no two segments

in P meet at an angle less than 90◦. Let ρ̄ be a real number greater than
√
2. DelTriPLC

produces a meshM of P whose triangles✁ radius-edge ratios do not exceed ρ̄, such that the

number of triangles inM is at most a constant factor greater than the number of triangles

in any other Steiner triangulation of P whose radius-edge ratios do not exceed ρ̄.

6.6 Meshing domains with small angles

Ruppert�s algorithm requires that no two segments meet at an acute angle. This is a severe

restriction. In practice, the algorithm often succeeds despite acute angles, but as domain

angles drop below about 45◦, it becomes increasingly likely to fail to terminate.

Figure 6.12 demonstrates one difficulty caused by small input angles. If two adjoining

segments have unequal lengths, an endless cycle of mutual encroachment may produce ever

shorter subsegments incident to the apex of the small angle. This phenomenon, sometimes

called ping-pong encroachment, is observed only with angles of 45◦ or less.

Sometimes it is impossible to obtain good element quality. If two segments of a domain

adjoin each other at a 1◦ angle, some triangle of the �nal mesh will have an angle of 1◦ or

less. Moreover, a small domain angle sometimes necessitates generating elements with new

small angles that are not inherited from the domain (recall Figure 1.5). Given a domain with

small angles, a mesh generator must diagnose where it is necessary to give up and accept

some poor-quality elements.

This section discusses two modi�cations to Ruppert�s algorithm that extend it so it

works remarkably well with domains that have small angles. The �rst modi�cation was
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1. v encroaches on au.

2. au is split at w .

3. w encroaches on av .

4. av is split at x .

5. x encroaches on aw .

The encroachment cycle continues forever.
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new vertex

midpoint

Figure 6.13: Concentric circular shells appear at left. If an encroached subsegment meets

another segment at an acute angle, the subsegment is split at its intersection with a circular

shell whose radius is 2i for some integer i. The illustrations at right are a sample input and

output of Ruppert✁s algorithm with concentric shell segment splitting.

proposed by Ruppert himself; he calls it ✂modi�ed segment splitting using concentric cir-

cular shells.✄ The second modi�cation is a simple observation about which skinny triangles

the mesh generator should not try to split. Together, these two modi�cations yield a variant

of Ruppert✁s algorithm that always terminates and has some impressive properties. Most

importantly, it can guarantee that no triangle has an angle greater than 138.6◦. It also guar-

antees that skinny triangles appear only between segments separated by small angles. Recall

that for many applications, bounding the largest angles is more important than bounding

the smallest angles, because the former are related to the discretization and interpolation

errors.

The �rst modi�cation is to split some encroached subsegments off-center, rather than

at their midpoints. Imagine that each input vertex is enclosed by concentric circles whose

radii are all the powers of two☎that is, 2i for all integers i, as illustrated in Figure 6.13.

When an encroached subsegment adjoins another segment at an angle less than 90◦, split

the subsegment not at its midpoint, but at one of the circular shells centered at the shared

vertex, so that one of new subsegments has a power-of-two length. Choose the shell that

gives the best-balanced split, so the two new subsegments produced by the split are between

one third and two thirds the length of the split subsegment.

If both vertices of a segment adjoin other segments, the segment may undergo up to two

unbalanced splits☎one for each end. Choose one vertex arbitrarily, and split the segment

so the subsegment adjoining that vertex has a power-of-two length between one quarter and

one half the length of the split subsegment. The other subsegment produced by this split

might undergo a subsequent off-center split, in which case all three subsegments will be

at least one �fth the length of the original segment. All subsequent subsegment splits are

bisections.

Concentric shell segment splitting prevents the runaway cycle of ever shorter subseg-

ments portrayed in Figure 6.12, because adjoining subsegments of equal length do not

encroach upon each other. Ruppert also suggests changing his algorithm so that it does not

attempt to split a skinny triangle nestled in the corner of a small input angle. These changes

are often effective, as the mesh at right in Figure 6.13 shows, and they always suffice for

simple polygons with no internal boundaries.
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I Edges au and av form an acute angle and v encroaches on au.

I au is split at its intersection with a circle centered at a.

I The radius is r = 2i with i the integer for which the split
point is as close as possible to the midpoint of au.

I If u is a circle point, au is split at its midpoint.

I au and av with u and v on the same circle do not encroach.
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re�nement

encroachment seditious edge

Figure 6.14: At left, a demonstration of how segments separated by small angles create

short, seditious edges as they are split; the re�nement of skinny triangles can cause the

subsegments to be split again. At right, a mesh generated by Ruppert✁s algorithm with

concentric shells when it declines to split triangles whose shortest edges are seditious. No

angle in this mesh is greater than 127.1◦, and no triangle has an angle less than 26.45◦

unless its shortest edge is seditious.

However, Figure 6.14 illustrates a more treacherous way by which small input angles

and internal boundaries can cause Delaunay re�nement to fail to terminate. Recall the key

idea that Delaunay re�nement should create no new edge that is shorter than the shortest

edge previously existing. If two subsegments that adjoin each other at a very small angle

are bisected, the new edge connecting their two midpoints can starkly violate this rule.

The new, shorter edge can cause subsequent re�nement as the algorithm removes skinny

triangles, as illustrated, which can cause the subsegments to be split again, creating a yet

shorter edge, and the cycle may continue forever.

An idea that breaks this cycle is to deny these new, unduly short edges the privilege

of causing further re�nement. Speci�cally, call an edge seditious if its vertices lie on two

distinct segments that meet each other at an angle less than 60◦, the two vertices lie on

the same concentric shell, and the two vertices are true midpoints (not off-center splits), as

illustrated in Figure 6.14.

The second modi�cation is to simply decline to try to split any skinny triangle whose

shortest edge is seditious. This precaution prevents the short lengths of seditious edges from

propagating through the mesh. Triangles with small angles can survive, but only between

segments adjoining each other at small angles. Figure 6.14 depicts a mesh generated by the

modi�ed algorithm for a PLC that requires both modi�cations to stop the algorithm from

re�ning forever.

The observation behind why this modi�ed algorithm terminates is that unduly short

edges✂edges shorter than those predicted by Proposition 6.4✂can be created in only two

circumstances. Off-center subsegment splits can create them, but only twice per PLC seg-

ment. Unduly short edges are also created by cascading bisections of adjoining segments, as
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I An edge uv is seditious when ∠uav < 60◦, u and v are on the
same circle centered at a, and they are midpoints.

I It causes an edge split that leads to another seditious edge.

I Fix: do not split a triangle whose shortest edge is seditious.
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Figure 6.16: Two variations of Ruppert✁s Delaunay re�nement algorithm with a 20◦ min-

imum angle. Left: Overre�nement with a Delaunay triangulation in a box. Right: Re�ne-

ment with a constrained Delaunay triangulation.

Proposition 6.14 guarantees termination, but not good grading. It is possible to salvage

a weakened proof of good grading; see the bibliographical notes for details.

In a practical implementation, it is wise to use an inter-segment angle smaller than 60◦

to de�ne seditious edges, so that Delaunay re�nement is less tolerant about leaving skinny

triangles behind. This change breaks the termination proof, but in practice it threatens ter-

mination only if the angle threshold for seditious edges is substantially smaller than 20◦.

(The algorithm must still decline to try to split triangles that are right in the corners of small

domain angles, of course, as these cannot be improved.)

6.7 Constrained Delaunay re�nement

If software for constructing and updating constrained Delaunay triangulations is available,

Ruppert✁s algorithm is easily modi�ed to construct and maintain a CDT instead of Del S ,

and it enjoys several advantages by doing so. First, the algorithm stores no triangles outside

the domain, even if |P| is not convex, and therefore saves the costs of maintaining them

and checking which triangles are in the domain. Second, every subsegment is an edge

of the CDT; whereas Ruppert✁s original algorithm sometimes must pay for point location

to insert the midpoint of a subsegment that is absent from Del S , constrained Delaunay

re�nement requires no point location, because every newly inserted vertex is associated

with a mesh edge or triangle. Third, and most important, CDTs prevent overre�nement that

can occur where geometric features are separated by small distances exterior to the domain,

as illustrated in Figure 6.16. As the mesh at left shows, Ruppert✁s original algorithm with a

bounding box can re�ne a mesh much more than necessary, because of encroachments and

skinny triangles exterior to the domain. A CDT prevents this overre�nement, as the mesh

at right illustrates.

A nuisance in Section 6.5 is that the proof of size optimality holds only if |P| is convex.

Figure 6.16 shows that this is not merely a technical �aw in the proofs; Ruppert✁s algorithm

does not always generate size-optimal meshes of nonconvex domains. The local feature size

does not distinguish exterior distances from interior distances, so it correctly predicts the

behavior of Ruppert✁s algorithm, but it is not an accurate estimate of the longest possible

edge lengths.
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I Step 1 can construct a constrained Delaunay triangulation.

I Triangles are not created outside the domain.

I This saves memory and avoids the domain test in step 3.

I Encroached input edges are in the triangulation.

I This avoids triangle location in step 2.

I Close, unconnected elements no longer force mesh refinement.



3D Delaunay Refinement

I Ruppert’s original algorithm generalizes to 3D.
I Delaunay triangulation is fast, but worst case O(n2).
I Splitting encroached edges is a bit more complicated.
I Encroached facets must also be split.
I The resulting Delaunay triangulation conforms to the input.
I Splitting bad tetrahedrons is like splitting bad triangles in 2D.

I The extension to acute angles is much more complicated.

I Constrained Delaunay triangulation maintains its advantages.

I The quality metric generalizes, but misses sliver tetrahedrons.


