Linear Programming (chapter 4)

Elisha Sacks

Casting

- Pour hot material into a mold.
- The material cools and hardens to form a part.
- Remove the part from the mold.

Castable

- Task: find a direction for extracting a part from a cast.
- The top facet of the part has outward normal $(0,0,1)$.
- The part is castable if it can be removed from the cast by pulling the top facet.
- The motion is linear with direction d such that $d_{z}>0$.
- The algorithm tries each facet as the top facet.
- It reports a facet with its direction or reports failure.

Casting Constraints

- A part facet f with normal η defines a cast facet \hat{f} with normal $\eta(\hat{f})=-\eta$.
- The facet \hat{f} blocks motion in the η half plane.
- The constraint is $d \cdot \eta \leq 0$.

Problem Formulation

- The motion direction d satisfies $d_{z}>0$.
- We normalize it as $d=\left(d_{x}, d_{y}, 1\right)$.
- The constraint for a facet is $d_{x} \eta_{x}+d_{y} \eta_{y}+\eta_{z} \leq 0$.
- We seek a d that satisfies all the facet constraints.

Feasible Region

feasible region

- Each constraint restricts d to a half space in the $x y$ plane.
- The intersection of the half spaces is the feasible region.
- The book computes the feasible region in $O(n \log n)$ time with a sweep line algorithm.
- We will find a feasible point in expected $O(n)$ time.

Linear Programming Formulation

Find a feasible p that maximizes $\vec{c} \cdot p$ with \vec{c} arbitary, or report that none exists.

- It is convenient to enclose $\left(d_{x}, d_{y}\right)$ in a bounding box.
- This is reasonable because tiny casting angles are impractical.
- The textbook shows how to solve unbounded linear programs.

Linear Programming

Maximize a linear objective subject to linear inequality constraints.

- Widely used in computational science.
- Simplex algorithm and interior point methods are efficient.
- Running time is polynomial in input size, but super-linear.
- Most application involve many variables and constraints.
- Casting involves two variables and many constraints.
- This case has a fast algorithm with expected linear time.
- The approach applies to three or more variables.
- The constant factor grows rapidly with dimension.

Incremental 2D Linear Programming Algorithm

- The initial feasible region is the bounding box C_{0} and the initial solution is a corner v_{0} that maximizes $f(p)=\vec{c} \cdot p$.
- Each constraint h_{i} is added and $v_{i} \in C_{i}$ is computed.
(i) If v_{i-1} is in the h_{i} half space, $v_{i}=v_{i-1}$.
(ii) Else v_{i} is the maximum of f on the feasible interval of h_{i}. If the feasible interval is empty, report failure.
- Case (ii) is a 1D linear program.

Solving the 1D Linear Program

- Let the h_{j} line have normal n_{j} and let h_{i} have tangent t.
- h_{j} intersects the h_{i} line in a half line bounded by a point p_{j}.
- Let a maximize $p_{j} \cdot t$ among the h_{j} with $n_{j} \cdot t>0$.
- Let b minimize $p_{j} \cdot t$ among the h_{j} with $n_{j} \cdot t<0$.
- If $(b-a) \cdot t<0$, the feasible region is empty.
- Else the feasible region is $[a, b]$ and the solution is a or b.

Correctness

Lemma 4.5 If $v_{i-1} \notin h_{i}$, either C_{i} is empty or v_{i} is on the h_{i} line. Proof Assume C_{i} is not empty and v_{i} is not on the h_{i} line.

- v_{i} is in C_{i-1} because C_{i-1} is a subset of C_{i}.
- The line segment $v_{i} v_{i-1}$ is in C_{i-1} by convexity.
- $v_{i} v_{i-1}$ intersects the h_{i} line because $v_{i-1} \notin h_{i}$ and $v_{i} \in h_{i}$.
- The intersection point q is in C_{i}.
- f increases along $v_{i} v_{i-1}$ because v_{i-1} is its maximum in C_{i-1}.
- $f(q) \geq f\left(v_{i}\right)$ which contradicts the definition of v_{i}.

Computational Complexity

- Computing v_{i} takes $O(i)$ time.
- The algorithm is $O\left(n^{2}\right)$ because this can happen at every i.
- The running time depends on the order of the h_{i}.
- The output is independent of the order.
- In the example, reversing the order leads to $O(n)$ time.
- Inserting the h_{i} in random order gives $O(n)$ on average.

Expected Running Time

Lemma 4.8 A 2D bounded linear program with n constraints is solved in $O(n)$ randomized expected time.
Proof

- The sample space is the n ! orderings of h_{1}, \ldots, h_{n}.
- The distribution is uniform.
- Let X_{i} equal 1 if $v_{i-1} \notin h_{i}$ and 0 otherwise.
- The running time for the steps with $X_{i}=0$ is $O(n)$.
- We bound the expected value of the steps with $X_{i}=1$.

$$
E=E\left[\sum_{i=1}^{n} O(i) X_{i}\right]=\sum_{i=1}^{n} O(i) E\left[X_{i}\right]
$$

- We will prove that $E\left[X_{i}\right] \leq 2 / i$.
- Hence $O(i) E\left[X_{i}\right]=O(1)$ and $E=O(n)$.

Backward Analysis

- $E\left[X_{n}\right]$ is the probability that v_{n} is created when h_{n} is added.
- This is the probability that v_{n} vanishes when h_{n} is removed.
- v_{n} vanishes if h_{n} is one of its two defining lines.
- The probability is $2 / n$ because the order is random.
- Likewise $E\left[X_{i}\right]=2 / i$.

Computing a Random Permutation

unsigned int * randomPermutation (unsigned int n)

unsigned int $* p=$ new unsigned int [n];
for (unsigned int $\mathrm{i}=0 \mathrm{u} ; \mathrm{i}<\mathrm{n} ;++\mathrm{i}$)
$\mathrm{p}[\mathrm{i}]=\mathrm{i}$;
for (unsigned int $\mathrm{i}=\mathrm{n}-1 \mathrm{u} ; \mathrm{i}>0 \mathrm{u} ;-\mathrm{i})$ \{ unsigned int $j=r a n d() \%(i+1)$; swap(p[i], p[j]);
\}
return p ;

Minimal Disk

- The incremental strategy applies to other tasks.
- Example: find the smallest disk that contains n points.

Minimal Disk Constraint

- Let C_{i} and D_{i} be the minimal circle and disk of p_{1}, \ldots, p_{i}.
- If $p_{i+1} \in D_{i}, D_{i+1}=D_{i}$.
- Otherwise, $p_{i+1} \in C_{i+1}$.
- Likewise if the circles must contain one or two points.

Algorithm

Circle * minDisk (const Points \&pts)
unsigned int $n=$ pts.size(),
*p $=$ randomPermutation(n);
PTR<Circle> $c=$ new Circle 2 pts (pts[p[0]], pts[p[1]]);
for (unsigned int $\mathrm{i}=2 \mathrm{u} ; \mathrm{i}<\mathrm{n} ;+\mathrm{i}$) $\{$
Point $* r=p t s[p[i]] ;$
if (PointlnCircle (r, c) $=-1$)

$$
\mathrm{c}=\operatorname{minDiskWithPoint}(\mathrm{pts}, \mathrm{p}, \mathrm{i}, \mathrm{r})
$$

\}
delete [] p;
return c;
\}

Algorithm

Circle * minDiskWithPoint
(constr Points \& pts, unsigned int $* p$, unsigned int n, Point $* q$)

PTR<Circle> $c=$ new Circle2pts (pt s[p[0]], q);
for (unsigned int $\mathrm{i}=1$; $\mathrm{i}<\mathrm{n} ;+\mathrm{i}$) \{
Point $* r=p t s[p[i]] ;$
if (PointlnCircle (r, c) =-1)

$$
\mathrm{c}=\text { minDiskWithTwoPoints }(\mathrm{pts}, \mathrm{p}, \mathrm{i}, \mathrm{q}, \mathrm{r}) \text {; }
$$

\}
return c;
\}

Algorithm

Circle * minDiskWithTwoPoints
(const Points \&pts, unsigned int $* p$, unsigned int n, Point *q1, Point *q2)

PTR $<$ Circle $>c=$ new Circle2pts (q1, q2);
for (unsigned int $\mathrm{i}=0 \mathrm{u} ; \mathrm{i}<\mathrm{n} ;++\mathrm{i}$) \{
Point $* r=p t s[p[i]] ;$
if (PointlnCircle (r, c) =-1)

$$
c=\text { new Circle3pts }(q 1, q 2, r)
$$

\}
return c;
\}

Expected Running Time

Theorem 4.15 The smallest enclosing disk of a set of n points is computed in $O(n)$ randomized expected time.
Proof

- minDiskWithTwoPoints is $O(n)$.
- minDiskWithPoint is $O(n)$ excluding minDiskWithTwoPoints.
- p_{i} costs $O(i)$ if it calls minDiskWithTwoPoints.
- This occurs if p_{i} is one of the three points on D_{i}.
- The probability is $2 / i$ because q is one of the three.
- Running time is $O(n)+\sum_{i} \frac{2}{i} O(i)=O(n)$.
- Likewise minDisk with $1 / i$ instead of $2 / i$.

