Lecture 1
Introduction to Computational Geometry

Elisha Sacks
Computational Geometry

Algorithmic study of combinatorial geometry.

- Many simple elements (points, lines, circles, triangles).
- Mostly 2D and 3D; some higher dimensions.
- Queries and constructions.
- Optimal algorithms and lower bounds.
Geometry is modeled with numerical parameters.

The most common case is points with Cartesian coordinates.

Predicates are signs of polynomials in these parameters.

Geometric properties are expressed as predicates.

Example: a path abc is a left or right turn if

$$LT(a, b, c) = (c_x - b_x)(a_y - b_y) - (c_y - b_y)(a_x - b_x)$$

is positive or negative. We will see why later.

The zero (degenerate) case is rare but important.
Line Segment Intersection

When do segments ab and cd intersect?

- Can test if the line intersection point is on both segments.

Intersection test:

$$\text{LT}(a, b, c) \text{ LT}(a, b, d) < 0 \text{ and } \text{LT}(c, d, a) \text{ LT}(c, d, b) < 0.$$
When do segments ab and cd intersect?

- Can test if the line intersection point is on both segments.
- But the intersection point is not needed.
Line Segment Intersection

When do segments ab and cd intersect?

▶ Can test if the line intersection point is on both segments.
▶ But the intersection point is not needed.
▶ Check if c and d are on opposite sides of the ab line, and if a and b are on opposite sides of the cd line.
Line Segment Intersection

When do segments ab and cd intersect?

- Can test if the line intersection point is on both segments.
- But the intersection point is not needed.
- Check if c and d are on opposite sides of the ab line, and if a and b are on opposite sides of the cd line.
- Intersection test:
 \[\text{LT}(a, b, c) \text{LT}(a, b, d) < 0 \text{ and } \text{LT}(c, d, a) \text{LT}(c, d, b) < 0. \]
Point in Polygon

- A polygon is represented by its vertices in boundary order.
- What is an algorithm for testing if a point is inside a polygon?
Point in Polygon

- A polygon is represented by its vertices in boundary order.
- What is an algorithm for testing if a point is inside a polygon?
- Any ray based at a intersects p an odd number of times.
A polygon is represented by its vertices in boundary order.

What is an algorithm for testing if a point is inside a polygon?

Any ray based at a intersects p an odd number of times.

What about special cases?
When do polygons p and q intersect?

- Two edges intersect.
- p is inside q.
- q is inside p.
- We know how to test for edge intersection.
- There is a faster algorithm called a line sweep.
- If no edges intersect, p is inside q if any vertex of p is inside q.

Image: Diagram showing two polygons p and q with their intersection.
When do polygons \(p \) and \(q \) intersect?

- Two edges intersect, \(p \) is inside \(q \), or \(q \) is inside \(p \).
- We know how to test for edge intersection.
- There is a faster algorithm called a line sweep.
- If no edges intersect, \(p \) is inside \(q \) if any vertex of \(p \) is inside \(q \).
Convex Hull

Smallest convex region containing n points.

- 2D: $n \log n$.
- 3D: $n \log n$.
Polygon Triangulation

Decompose a polygon with n vertices into triangles.

- **2D**: $n \log n$.
- **3D**: decompose a polyhedron into tetrahedrons.
- Need to add vertices (Steiner points) for some inputs.
- $nr + r^2 \log r$ for $r = O(n^2)$ reflex edges.
Find points in axis-aligned box.

- Input size is n; output size is k.
- 2D: $k + \log n$ query; $n \log n$ preprocessing.
- 3D: $k + \log^2 n$ query; $n \log^2 n$ preprocessing.
- Octrees: fast in practice.
Point Location

Locate the cell that contains a point in a mesh with \(n \) vertices.

- 2D: \(\log n \) query; \(n \log n \) preprocessing.
- 3D: open problem!
Voronoi Diagram

Compute the region that is closest to each of \(n \) sites.

- 2D: \(n \log n \).
- 3D: \(k + n \log n \) for output size \(k = O(n^2) \).
Delaunay Triangulation

Triangulate n vertices with a maximal minimum angle.

- Equivalent to Voronoi diagram.
-convex hull in dimension d gives Delaunay triangulation in dimension $d - 1$.

Other Topics

- Robustness and ACP
- Linear programming
- Persistent binary trees
- Duality
- Binary space partitions
- Robot motion planning
- Meshing
- Euclidean shortest paths
- Differential and projective geometry
- Mechanism kinematics