Lecture 1
 Introduction to Computational Geometry

Elisha Sacks

Computational Geometry

Algorithmic study of combinatorial geometry.

- Many simple elements (points, lines, circles, triangles).
- Mostly 2D and 3D; some higher dimensions.
- Queries and constructions.
- Optimal algorithms and lower bounds.

Parameters and Predicates

- Geometry is modeled with numerical parameters.
- The most common case is points with Cartesian coordinates.
- Predicates are signs of polynomials in these parameters.
- Geometric properties are expressed as predicates.
- Example: a path $a b c$ is a left or right turn if

$$
\operatorname{LT}(a, b, c)=\left(c_{x}-b_{x}\right)\left(a_{y}-b_{y}\right)-\left(c_{y}-b_{y}\right)\left(a_{x}-b_{x}\right)
$$

is positive or negative. We will see why later.

- The zero (degenerate) case is rare but important.

Line Segment Intersection

When do segments $a b$ and $c d$ intersect?

- Can test if the line intersection point is on both segments.

Line Segment Intersection

When do segments $a b$ and $c d$ intersect?

- Can test if the line intersection point is on both segments.
- But the intersection point is not needed.

Line Segment Intersection

When do segments $a b$ and $c d$ intersect?

- Can test if the line intersection point is on both segments.
- But the intersection point is not needed.
- Check if c and d are on opposite sides of the $a b$ line, and if a and b are on opposite sides of the $c d$ line.

Line Segment Intersection

When do segments $a b$ and $c d$ intersect?

- Can test if the line intersection point is on both segments.
- But the intersection point is not needed.
- Check if c and d are on opposite sides of the $a b$ line, and if a and b are on opposite sides of the $c d$ line.
- Intersection test:
$\operatorname{LT}(a, b, c) \operatorname{LT}(a, b, d)<0$ and $\operatorname{LT}(c, d, a) \operatorname{LT}(c, d, b)<0$.

Point in Polygon

- A polygon is represented by its vertices in boundary order.
- What is an algorithm for testing if a point is inside a polygon?

Point in Polygon

- A polygon is represented by its vertices in boundary order.
- What is an algorithm for testing if a point is inside a polygon?
- Any ray based at a intersects p an odd number of times.

Point in Polygon

- A polygon is represented by its vertices in boundary order.
- What is an algorithm for testing if a point is inside a polygon?
- Any ray based at a intersects p an odd number of times.
- What about special cases?

Polygon Intersection

When do polygons p and q intersect?

Polygon Intersection

When do polygons p and q intersect?

- Two edges intersect, p is inside q, or q is inside p.
- We know how to test for edge intersection.
- There is a faster algorithm called a line sweep.
- If no edges intersect, p is inside q if any vertex of p is inside q.

Convex Hull

Smallest convex region containing n points.

- 2D: $n \log n$.
- 3D: $n \log n$.

Polygon Triangulation

Decompose a polygon with n vertices into triangles.

- 2D: $n \log n$.
- 3D: decompose a polyhedron into tetrahedrons.
- Need to add vertices (Steiner points) for some inputs.
- $n r+r^{2} \log r$ for $r=\mathrm{O}\left(n^{2}\right)$ reflex edges.

Range Search

Find points in axis-aligned box.

- Input size is n; output size is k.
- 2D: $k+\log n$ query; $n \log n$ preprocessing.
- 3D: $k+\log ^{2} n$ query; $n \log ^{2} n$ preprocessing.
- Octrees: fast in practice.

Point Location

Locate the cell that contains a point in a mesh with n vertices.

- 2D: $\log n$ query; $n \log n$ preprocessing.
- 3D: open problem!

Voronoi Diagram

Compute the region that is closest to each of n sites.

- 2D: $n \log n$.
- 3D: $k+n \log n$ for output size $k=O\left(n^{2}\right)$.

Delaunay Triangulation

Triangulate n vertices with a maximal minimum angle.

- Equivalent to Voronoi diagram.
- convex hull in dimension d gives Delaunay triangulation in dimension $d-1$.

Other Topics

- Robustness and ACP
- Linear programming
- Persistent binary trees
- Duality
- Binary space partitions
- Robot motion planning
- Meshing
- Euclidean shortest paths
- Differential and projective geometry
- Mechanism kinematics

