3D Convex Hulls (chapter 11)

Elisha Sacks

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Convex Hull of 3D Points

- Smallest convex set that contains the points
- Convex polyhedron
- Used in shape approximation and collision detection
- 2D Voronoi diagram and Delaunay triangulation (next class)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Boundary Representation

- A vertex has coordinates and incident edges.
- An edge has a tail, a twin, a next edge, and a facet.
- Edge loops bound facets.
- A facet has one edge per boundary loop.
- A convex polyhedron is a convex set bounded by convex facets such that every edge is incident on one facet.

Space Complexity

Theorem 11.1 A convex polyhedron with *n* vertices has at most 3n - 6 edges and at most 2n - 4 facets.

Proof Euler's formula for a genus zero polyhedron with *e* edges and *f* facets is n - e + f = 2. Every facet has at least three edges and every edge is incident on two facets, so $2e \ge 3f$. n + f - 2 = e implies $n + f - 2 \ge 3f/2$ hence $f \le 2n - 4$. e = n + f - 2 implies $e \le n + 2n - 4 - 2 = 3n - 6$.

Incremental 2D Algorithm

- 1. Randomize the points to p_1, \ldots, p_n .
- 2. Initialize the hull to $H = p_1 p_2 p_3$ in counterclockwise order.
- 3. For r = 4 to n:
 - If p_r is outside of H
 - Remove the visible edges $a_1a_2, \ldots, a_{k-1}a_k$.
 - Create edges a_1p_r and p_ra_k .

Incremental 3D Algorithm

- ► The same idea works in 3D.
- A facet is visible if p_r is in its positive half-space.
- ► The visible facets form a surface.
- The boundary of this surface is the *horizon* curve.

Incremental 3D Algorithm

- 1. Randomize the points to p_1, \ldots, p_n .
- 2. Initialize the hull to $\mathcal{CH}(P_4) = p_1 p_2 p_3 p_4$.
- 3. For r = 5 to n:
 - If p_r is outside of $CH(P_{r-1})$

Remove the visible facets.

Create facets that link p_r to the horizon edges.

Note: need to list horizon edges counterclockwise around p_r .

Conflict Graph

- Each uninserted point is linked to its visible facets.
- Each facet is linked to its visible uninserted points.
- The graph is initialized with the facets of CH(P₄) and the uninserted points p₅,..., p_n.
- It is updated during point insertion.
- The Delaunay triangulation algorithm uses the same idea.

Conflict Graph Update

- 1. Remove the p_r node and its edges.
- 2. For each new horizon edge *e* with new facet *f* :
 - 2.1 Let S be the points that conflict with the old e facets f_1 and f_2 .
 - 2.2 Remove the facet nodes and their edges.
 - 2.3 Create the f node.
 - 2.4 Add edges from the f node to its visible points in S.

Correctness proof: If a point can see f in $\mathcal{CH}(P_r)$, it can see e in $\mathcal{CH}(P_r)$, so it can see e in $\mathcal{CH}(P_{r-1}) \subset \mathcal{CH}(P_r)$, so it can see a facet incident on e in $\mathcal{CH}(P_{r-1})$.

Degenerate Cases

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Degeneracy: A point p_r is coplanar with a facet f. If f does not contain p_r , it is visible. The new facet is not a triangle. The new facet has the same conflicts as the old one.

Degeneracy: The points p_1 , p_2 , p_3 , p_4 are coplanar. Prevented by randomization. Or pick four other points.

Degeneracy: The points are coplanar. use a 2D algorithm.

Degeneracy: The points are collinear. Return a line segment.

Complexity

- We prove that the expected number of facets created is O(n).
- Let *s* be the total number of points in the *S* sets in step 2.1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The expected time complexity is O(n + s).
- The book proves that s is $O(n \log n)$.
- The proof is a complicated variant of earlier proofs.

Number of Facets

Lemma 11.3 The expected number of facets created is at most 6n - 20.

Proof $CH(P_4)$ has four facets.

The number of facets created by p_r is the number of edges incident on p_r in $CH(P_r)$.

There are at most 3r - 6 edges each incident on two vertices.

The expected number of p_r facets is (6r - 12)/r < 6.

The sum over the *n* points is at most 4 + 6(n - 4) = 6n - 20.