3D Convex Hulls (chapter 11)

Elisha Sacks

Convex Hull of 3D Points

- Smallest convex set that contains the points
- Convex polyhedron
- Used in shape approximation and collision detection
- 2D Voronoi diagram and Delaunay triangulation (next class)

Boundary Representation

- A vertex has coordinates and incident edges.
- An edge has a tail, a twin, a next edge, and a facet.
- Edge loops bound facets.
- A facet has one edge per boundary loop.
- A convex polyhedron is a convex set bounded by convex facets such that every edge is incident on one facet.

Space Complexity

Theorem 11.1 A convex polyhedron with n vertices has at most $3 n-6$ edges and at most $2 n-4$ facets.
Proof Euler's formula for a genus zero polyhedron with e edges and f facets is $n-e+f=2$. Every facet has at least three edges and every edge is incident on two facets, so $2 e \geq 3 f$.
$n+f-2=e$ implies $n+f-2 \geq 3 f / 2$ hence $f \leq 2 n-4$.
$e=n+f-2$ implies $e \leq n+2 n-4-2=3 n-6$.

Incremental 2D Algorithm

1. Randomize the points to p_{1}, \ldots, p_{n}.
2. Initialize the hull to $H=p_{1} p_{2} p_{3}$ in counterclockwise order.
3. For $r=4$ to n :

If p_{r} is outside of H
Remove the visible edges $a_{1} a_{2}, \ldots, a_{k-1} a_{k}$.
Create edges $a_{1} p_{r}$ and $p_{r} a_{k}$.

Incremental 3D Algorithm

f is visible from p,
but not from q

- The same idea works in 3D.
- A facet is visible if p_{r} is in its positive half-space.
- The visible facets form a surface.
- The boundary of this surface is the horizon curve.

Incremental 3D Algorithm

$\mathcal{C H}\left(P_{r}\right)$

1. Randomize the points to p_{1}, \ldots, p_{n}.
2. Initialize the hull to $\mathcal{C H}\left(P_{4}\right)=p_{1} p_{2} p_{3} p_{4}$.
3. For $r=5$ to n :

If p_{r} is outside of $\mathcal{C H}\left(P_{r-1}\right)$
Remove the visible facets.
Create facets that link p_{r} to the horizon edges.
Note: need to list horizon edges counterclockwise around p_{r}.

Conflict Graph

- Each uninserted point is linked to its visible facets.
- Each facet is linked to its visible uninserted points.
- The graph is initialized with the facets of $\mathcal{C H}\left(P_{4}\right)$ and the uninserted points p_{5}, \ldots, p_{n}.
- It is updated during point insertion.
- The Delaunay triangulation algorithm uses the same idea.

Conflict Graph Update

1. Remove the p_{r} node and its edges.
2. For each new horizon edge e with new facet f :
2.1 Let S be the points that conflict with the old e facets f_{1} and f_{2}.
2.2 Remove the facet nodes and their edges.
2.3 Create the f node.
2.4 Add edges from the f node to its visible points in S.

Correctness proof: If a point can see f in $\mathcal{C H}\left(P_{r}\right)$, it can see e in $\mathcal{C H}\left(P_{r}\right)$, so it can see e in $\mathcal{C H}\left(P_{r-1}\right) \subset \mathcal{C H}\left(P_{r}\right)$, so it can see a facet incident on e in $\mathcal{C H}\left(P_{r-1}\right)$.

Degenerate Cases

Degeneracy: A point p_{r} is coplanar with a facet f.
If f does not contain p_{r}, it is visible.
The new facet is not a triangle.
The new facet has the same conflicts as the old one.
Degeneracy: The points $p_{1}, p_{2}, p_{3}, p_{4}$ are coplanar.
Prevented by randomization. Or pick four other points.
Degeneracy: The points are coplanar. use a 2D algorithm.

Degeneracy: The points are collinear.
Return a line segment.

Complexity

- We prove that the expected number of facets created is $O(n)$.
- Let s be the total number of points in the S sets in step 2.1.
- The expected time complexity is $O(n+s)$.
- The book proves that s is $O(n \log n)$.
- The proof is a complicated variant of earlier proofs.

Number of Facets

Lemma 11.3 The expected number of facets created is at most $6 n-20$.

Proof
$\mathcal{C H}\left(P_{4}\right)$ has four facets.
The number of facets created by p_{r} is the number of edges incident on p_{r} in $\mathcal{C H}\left(P_{r}\right)$.
There are at most $3 r-6$ edges each incident on two vertices.
The expected number of p_{r} facets is $(6 r-12) / r<6$.
The sum over the n points is at most $4+6(n-4)=6 n-20$.

