## Convex Hull (chapter 1)

Elisha Sacks



### Convexity



- A point set S is convex if for all points p and q in S the line segment pq is in S.
- ▶ The convex hull of *S* is its smallest convex superset.
- Hence, the convex hull is the intersection of all the convex sets that contain S.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### Finite Point Sets



The convex hull of a finite point set S is the smallest polygon that contains every point in S.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Intuition: shrink wrap the polygon.

#### **Problem Statement**



- The output points are in clockwise order.
- Clockwise order is more convenient for this example.
- Counterclockwise order is the norm.
- The rest of the course uses counterclockwise order.

イロト 不得 トイヨト イヨト

3

### Hull Edge



pq is a hull edge if every other point lies on the same side of its supporting line.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

# Upper Hull



- The upper hull is the edges whose supporting lines are above all the other points.
- It consists of a polygonal curve from the leftmost point p<sub>1</sub> to the rightmost point p<sub>n</sub>.
- The lower hull is the edges whose supporting lines are below all the other points.
- It consists of a polygonal curve from the rightmost point to the leftmost point.
- Algorithm: construct the two hulls then append them.

#### Hull Predicate



- Let *a* and *b* be points with  $a_x < b_x$ .
- *ab* is an upper hull edge if every point *c* is below *ab*.
- Equivalently LT(a, b, c) < 0.
- ab is a lower hull edge if every point c is above ab.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Equivalently LT(a, b, c) > 0.

### Generic Upper Hull Algorithm



Points have distinct x coordinates and no three are collinear.

- 1. Sort the points in increasing x order:  $p_1, \ldots, p_n$ .
- 2. Initialize an empty hull h = ().
- 3. For i = 1 to n
  - 3.1 Append  $p_i$  to h.
  - 3.2 While h contains  $m \ge 3$  points and  $LT(h_{m-2}, h_{m-1}, h_m) > 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 3.2.1 Set  $h_{m-1}$  to  $h_m$ .
- 3.2.2 Remove the last element of h.

#### Handling Degenerate Cases



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

- Degeneracy 1: points with equal x coordinates.
- Handling: break ties by y order (lexicographic order).
- The higher point is on the upper hull.
- Degeneracy 2: collinear points.
- ▶ Handling: treat as left turn (replace > with ≥).
- The interior points are not on the hull.
- What happens when both degeneracies occur?

#### Correctness



Inductive correctness proof for the upper hull algorithm.

- Correctness is trivial for i = 2 points, so consider i > 2.
- The update creates a curve  $h_i$  from  $p_1$  to  $p_i$  with right turns.
- ▶ Let p<sub>i</sub> with j < i be a point that is not an h<sub>i</sub> vertex.
- ▶ p<sub>j</sub> is in the x range of h<sub>i-1</sub> because p<sub>i-1</sub> is an h<sub>i-1</sub> vertex and the points are in x order.
- $\triangleright$   $p_j$  is below or on  $h_{i-1}$  by inductive hypothesis.
- $\triangleright$   $p_j$  is below or on  $h_i$  because removing left turns increases y.

### Complexity

- ▶ Sorting the points takes  $O(n \log n)$  time.
- Each point is removed at most once from *h*.
- Hence, the time spent on updating the hull is O(n).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Thus, the running time is  $O(n \log n)$ .
- The space complexity is O(n).
- These bounds are optimal.

#### Improved Version



・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Construct the entire hull with one subroutine.

- 1. Set  $p_1$  to the point with the smallest y coordinate.
- 2. Sort the other points counterclockwise around  $p_1$ .
- 3. Construct the hull as before, but keeping left turns.

### Gift Wrapping Algorithm



- 1. Initialize the hull to  $h = (p_1)$  with  $p_1$  the point with the smallest y coordinate.
- 2. Initialize v to (1, 0).
- 3. Repeat

3.1 Let 
$$h = (p_1, \ldots, p_i)$$
.

3.2 Find the point q that minimizes the angle  $\angle (v, q - p_i)$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 3.3 Append q to h.
- 3.4 Set v to  $q p_i$ .
- 3.5 If  $p_1 = q$  return h.

### Analysis

- All n points can be on the hull.
- Adding a point to the hull takes O(n) time.
- Hence, the running time is  $O(n^2)$ .
- The running time is also O(nh) with h the size of the hull.
- Gift wrapping is faster than the O(n log n) algorithms when most of the points are in the interior of the hull.
- An algorithm whose running time depends on the output size is called output sensitive.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●