
Convex Hull (chapter 1)

Elisha Sacks



Convexity

convex not convex

pq

p

q

pq

p

q

I A point set S is convex if for all points p and q in S the line
segment pq is in S .

I The convex hull of S is its smallest convex superset.

I Hence, the convex hull is the intersection of all the convex
sets that contain S .



Finite Point Sets

I The convex hull of a finite point set S is the smallest polygon
that contains every point in S .

I Intuition: shrink wrap the polygon.



Problem Statement

p1

p2
p3

p4

p5

p6

p7

p8

p9

p1, p2, p3, p4, p5, p6, p7, p8, p9

input = set of points:

output = representation of the convex hull:

p4, p5, p8, p2, p9

I The output points are in clockwise order.

I Clockwise order is more convenient for this example.

I Counterclockwise order is the norm.

I The rest of the course uses counterclockwise order.



Hull Edge

p
q

pq is a hull edge if every other point lies on the same side of its
supporting line.



Upper Hull

p1
pn

upper hull

lower hull

I The upper hull is the edges whose supporting lines are above
all the other points.

I It consists of a polygonal curve from the leftmost point p1 to
the rightmost point pn.

I The lower hull is the edges whose supporting lines are below
all the other points.

I It consists of a polygonal curve from the rightmost point to
the leftmost point.

I Algorithm: construct the two hulls then append them.



Hull Predicate

p1
pn

upper hull

lower hull

I Let a and b be points with ax < bx .

I ab is an upper hull edge if every point c is below ab.

I Equivalently LT(a, b, c) < 0.

I ab is a lower hull edge if every point c is above ab.

I Equivalently LT(a, b, c) > 0.



Generic Upper Hull Algorithm

pi

points deleted

Points have distinct x coordinates and no three are collinear.

1. Sort the points in increasing x order: p1, . . . , pn.

2. Initialize an empty hull h = ().

3. For i = 1 to n

3.1 Append pi to h.
3.2 While h contains m ≥ 3 points and LT(hm−2, hm−1, hm) > 0

3.2.1 Set hm−1 to hm.
3.2.2 Remove the last element of h.



Handling Degenerate Cases

not a right turn

I Degeneracy 1: points with equal x coordinates.

I Handling: break ties by y order (lexicographic order).

I The higher point is on the upper hull.

I Degeneracy 2: collinear points.

I Handling: treat as left turn (replace > with ≥).

I The interior points are not on the hull.

I What happens when both degeneracies occur?



Correctness

pi

pi−1

empty region

Inductive correctness proof for the upper hull algorithm.

I Correctness is trivial for i = 2 points, so consider i > 2.

I The update creates a curve hi from p1 to pi with right turns.

I Let pj with j < i be a point that is not an hi vertex.

I pj is in the x range of hi−1 because pi−1 is an hi−1 vertex and
the points are in x order.

I pj is below or on hi−1 by inductive hypothesis.

I pj is below or on hi because removing left turns increases y .



Complexity

I Sorting the points takes O(n log n) time.

I Each point is removed at most once from h.

I Hence, the time spent on updating the hull is O(n).

I Thus, the running time is O(n log n).

I The space complexity is O(n).

I These bounds are optimal.



Improved Version

p
1

p
2

p
3

p
6

p
5

p
4

Construct the entire hull with one subroutine.

1. Set p1 to the point with the smallest y coordinate.

2. Sort the other points counterclockwise around p1.

3. Construct the hull as before, but keeping left turns.



Gift Wrapping Algorithm

1

p
2

p
3

q

p

v

1. Initialize the hull to h = (p1) with p1 the point with the
smallest y coordinate.

2. Initialize v to (1, 0).

3. Repeat

3.1 Let h = (p1, . . . , pi ).
3.2 Find the point q that minimizes the angle ∠(v , q − pi ).
3.3 Append q to h.
3.4 Set v to q − pi .
3.5 If p1 = q return h.



Analysis

I All n points can be on the hull.

I Adding a point to the hull takes O(n) time.

I Hence, the running time is O(n2).

I The running time is also O(nh) with h the size of the hull.

I Gift wrapping is faster than the O(n log n) algorithms when
most of the points are in the interior of the hull.

I An algorithm whose running time depends on the output size
is called output sensitive.


