Geometry of Curves and Surfaces

Elisha Sacks

Planar Vector Geometry

- Vectors represent positions and directions.
- Vector u has Cartesian coordinates $u=\left(u_{x}, u_{y}\right)$.
- Inner product: $u \cdot v=u_{x} v_{x}+u_{y} v_{y}$.
- Projection of u onto $v:(u \cdot v / v \cdot v) v$.
- Vector length: $\|u\|=\sqrt{u \cdot u}$.
- Unit vector: $u /\|u\|$.
- Cross product: $u \times v=u_{x} v_{y}-u_{y} v_{x}$
- Let α be the angle between u and v.
- $u \cdot v=\|u\| \cdot\|v\| \cdot \cos \alpha$.
- $u \times v=\|u\| \cdot\|v\| \cdot \sin \alpha$.

Spatial Vector Geometry

- Vectors represent positions and directions.
- Vector u has coordinates $u=\left(u_{x}, u_{y}, u_{z}\right)$.
- Inner product: $u \cdot v=u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}$.
- Projection of u onto $v:(u \cdot v / v \cdot v) v$.
- Vector length: $\|u\|=\sqrt{u \cdot u}$.
- Unit vector $u /\|u\|$.
- Cross product:
$u \times v=\left(u_{y} v_{z}-u_{z} v_{y}, u_{z} v_{x}-u_{x} v_{z}, u_{x} v_{y}-u_{y} v_{x}\right)$
- Let α be the angle between u and v.
- $u \cdot v=\|u\| \cdot\|v\| \cdot \cos \alpha$.
- $u \times v=(\|u\| \cdot\|v\| \cdot \sin \alpha) n$ with n a unit vector perpendicular to u and v.

Plane Curves

- Explicit: $y=f(x)$
- Implicit: $f(x, y)=0$
- Parametric: $\gamma(w)=(x(w), y(w))$
- Example: circle with center o and radius r
- explicit: $y=o_{y} \pm \sqrt{r^{2}-o_{x}^{2}}$
- implicit: $\left(x-o_{x}\right)^{2}+\left(y-o_{y}\right)^{2}=r^{2}$
- parametric: $\gamma(w)=\left(o_{x}+r \cos w, o_{y}+r \sin w\right)$.

Space Curves

- Parameteric: $\gamma(w)=((x(w), y(w), z(w))$.
- Most results apply to plane curves after dropping z.
- Implicit are rarely useful: $f(x, y, z)=0, g(x, y, z)=0$.

Tangent Vectors

- The velocity vector at w is $\dot{\gamma}(w)$.
- The tangent line is $\gamma(w)+\dot{\gamma}(w) \Delta w$.
- The speed is $v=\|\dot{\gamma}\|$.
- The length of the curve is the integral of v.

Length Parameterization

- Let $s(w)=\int_{u=0}^{w} v$ denote the length of the curve γ on $[0, w]$.
- The length parameterization of γ is $\gamma(s)$.
- The curve $\gamma(s)$ has unit speed, so its length on $[0, z]$ is z.
- Rewriting $\gamma(w)$ as $\gamma(s)$ is impractical.
- Changing variables at a point is easy using the chain rule.
- We use the notation $\gamma^{\prime}=\frac{\partial \gamma}{\partial s}$.
- γ^{\prime} is a unit vector.

$$
\text { Proof: } \dot{\gamma}=\frac{\partial \gamma}{\partial s} \frac{\partial s}{\partial w}=\gamma^{\prime} \dot{s}=\gamma^{\prime} v \text {, so } \gamma^{\prime}=\frac{\dot{\gamma}}{v}=\frac{\dot{\gamma}}{\|\dot{\gamma}\|}
$$

- The unit tangent is denoted $t=\gamma^{\prime}$.

Curvature

The curvature of a curve γ at a point p measures its deviation from the tangent line at p.

- The curvature is $\kappa=\left\|t^{\prime}\right\|$.
- The principal normal is $n=t^{\prime} / \kappa$.
- n is orthogonal to $t: t \cdot t=1$ implies $(t \cdot t)^{\prime}=2 t \cdot t^{\prime}=0$.
- A circle of radius r has constant curvature $1 / r$.
- Two curves have second-order contact at a common point when they have the same unit tangent and curvature.
- Every curve has second-order contact at p with a circle of radius $r=1 /|\kappa|$ whose center is $o=p+r n$.

Curvature Computation

The curvature of $\gamma(w)$ is computed as follows.

- $\dot{\gamma}=v t$
- $\dot{t}=\frac{\partial t}{\partial s} \frac{\partial s}{\partial w}=t^{\prime} v$
- $\ddot{\gamma}=\frac{\partial}{\partial w}(v t)=\dot{v} t+v \dot{t}=\dot{v} t+v\left(t^{\prime} v\right)=\dot{v} t+v^{2} t^{\prime}=\dot{v} t+\kappa v^{2} n$
- $\dot{\gamma} \times \ddot{\gamma}=(v t) \times\left(\dot{v} t+\kappa v^{2} n\right)=\kappa v^{3} t \times n$
- $\|\dot{\gamma} \times \ddot{\gamma}\|=\kappa v^{3}\|t \times n\|=\kappa v^{3}$
- $\kappa=\frac{\|\dot{\gamma} \times \ddot{\gamma}\|}{v^{3}}=\frac{\|\dot{\gamma} \times \ddot{\gamma}\|}{\|\dot{\gamma}\|^{3}}$

Torsion

- The binormal vector is $b=t \times n$.
- b^{\prime} is orthogonal to t and to b.
- $b \cdot t=0$ implies $(b \cdot t)^{\prime}=b^{\prime} \cdot t+b \cdot t^{\prime}=0$, so $b^{\prime} \cdot t=-b \cdot \kappa n=0$.
- $b \cdot b=1$ implies $(b \cdot b)^{\prime}=2 b^{\prime} \cdot b=0$.
- Define $b^{\prime}=-\tau n$ with τ called the torsion.
- τ measures the deviation of the curve from the tn plane.
- A curve is planar if and only if τ is identically zero.
- $n^{\prime}=(b \times t)^{\prime}=b^{\prime} \times t+b \times t^{\prime}=(-\tau n) \times t+b \times(\kappa n)=\tau b-\kappa t$.
- The torsion formula is similar to the curvature formula, but contains the third derivative of γ.

Frenet Frame

- Frame: tangent t, principal normal n, and binormal b.
- They satisfy the ordinary differential equations

$$
\begin{aligned}
t^{\prime} & =\kappa n \\
n^{\prime} & =-\kappa t+\tau b \\
b^{\prime} & =-\tau n
\end{aligned}
$$

- For given functions $\kappa(s)$ and $\tau(s)$, the Frenet equations determine the curve up to a translation and a rotation.

Generalized Frenet Equations

The Frenet equations for a general curve $\gamma(w)$ have an extra factor of $v=\|\dot{\gamma}\|$.

$$
\begin{aligned}
\dot{t} & =v \kappa n \\
\dot{n} & =-v \kappa t+v \tau b \\
\dot{b} & =-v \tau n
\end{aligned}
$$

The first equation and the chain rule yield a useful formula for $\ddot{\gamma}$.

$$
\ddot{\gamma}=\frac{\partial}{\partial w}(\dot{\gamma})=\frac{\partial}{\partial w}(v t)=\dot{v} t+v \dot{t}=\dot{v} t+\kappa v^{2} n
$$

The tangential acceleration $\dot{v} t$ is due to the change in speed. The normal acceleration $\kappa v^{2} n$ is due to the change in tangent direction.

Surfaces

- Representation
- explicit: $z=f(x, y)$
- implicit: $f(x, y, z)=0$
- parametric: $f(u, v)=(x(u, v), y(u, v), z(u, v))$
- Explicit surfaces are a special case of parametric surfaces.
- Implicit surfaces are more general, but often less convenient.
- An implicit or parameteric surface has an explicit representation in the neighborhood of a regular point.

Cylinder

$$
\begin{aligned}
& x(u, v)=r \cos v \\
& y(u, v)=r \sin v \\
& z(u, v)=u
\end{aligned}
$$

Implicit representation: $x^{2}+y^{2}=r^{2}$.

Cone

Implicit representation: $x^{2}+y^{2}=(z \tan \gamma)^{2}$.

Sphere

$$
\begin{aligned}
& x(u, v)=r \cos u \cos v \\
& y(u, v)=r \cos u \sin v \\
& z(u, v)=r \sin u
\end{aligned}
$$

Implicit representation: $x^{2}+y^{2}+z^{2}=r^{2}$.

Ellipsoid

$$
\begin{aligned}
& x(u, v)=a \cos u \cos v \\
& y(u, v)=b \cos u \sin v \\
& z(u, v)=c \sin u
\end{aligned}
$$

Implicit representation: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.

Parametric Surface

- The function f maps the parameter space M to the surface.
- The differential $d f$ maps a tangent vector X at $(u, v) \in M$ to a tangent vector $d f(X)$ of the surface at $f(u, v) \in f(M)$.
- The surface is regular at points where $d f$ has full rank.
- We assume regularity from here on.

Tangent Plane

- The coordinate form of the differential is $d f(u, v)=f_{u} u+f_{v} v$ with $f_{u}=\frac{\partial f}{\partial u}$ and $f_{v}=\frac{\partial f}{\partial v}$.
- The tangent vectors form a plane that is spanned by f_{u} and f_{v}.
- The tangent plane equation is $f(u, v)+f_{u} \Delta u+f_{v} \Delta v$.
- The unit normal is $U=f_{u} \times f_{v} /\left\|f_{u} \times f_{v}\right\|$.
- A parameter space curve $(u(w), v(w))$ defines a spatial curve $g(w)=f(u(w), v(w))$ on $f(u, v)$ with tangent $\dot{g}=f_{u} \dot{u}+f_{v} \dot{v}$.

Angles and Area

- The angle between two curves with tangents \dot{g}_{1} and \dot{g}_{2} is given by $\cos \theta=\frac{\dot{g}_{1}}{\left\|\dot{g}_{1}\right\|} \cdot \frac{\dot{g}_{2}}{\left\|\dot{g}_{2}\right\|}$.
- The iso-parametric curves at (u, v) are $(u+w, v)$ and $(u, v+w)$ with tangent vectors f_{u} and f_{v}.
- The iso-parametric box with corners (u, v) and $(u+\Delta u, v+\Delta v)$ bounds an area of about $\left\|f_{u} \times f_{v}\right\| \Delta u \Delta v$.
- The differential of area is $\left\|f_{u} \times f_{v}\right\|$.

Shape Operator

- The shape operator of a surface M at a point p measures the deviation from the tangent plane in a direction w.
- The deviation equals the covariant derivative of the unit normal U in the w direction, denoted $\nabla_{w} U$.
- The shape operator is $S_{p}(w)=-\nabla_{w} U$.
- The minus sign simplifies some formulas.
- $S_{p}(w)$ is written as $S(w)$ in contexts where p is obvious.

Shape Operator Properties

Claim S_{p} is a symmetric linear operator on the tangent space at p.

1. Linearity is a standard property of the covariant derivative.
2. To show that $S(w)$ is orthogonal to U, differentiate $U \cdot U=1$ to obtain $0=w[U \cdot U]=2 U \cdot \nabla_{w} U=-2 U \cdot S(w)$.
3. Symmetry means that $S(a) \cdot b=S(b) \cdot a$ for all tangent vectors a and b. It suffices to prove $S\left(f_{u}\right) \cdot f_{v}=S\left(f_{v}\right) \cdot f_{u}$ by linearity.
We have $S\left(f_{u}\right)=-\nabla_{f_{u}} U=-U_{u}$ and $S\left(f_{v}\right)=-\nabla_{f_{v}} U=-U_{v}$.
Differentiating $U \cdot f_{u}=0$ yields
$\frac{\partial}{\partial v}\left(U \cdot f_{u}\right)=U_{v} \cdot f_{u}+U \cdot f_{u v}=-S\left(f_{v}\right) \cdot f_{u}+U \cdot f_{u v}=0$ and so $S\left(f_{v}\right) \cdot f_{u}=U \cdot f_{u v}$.
Differentiating $U \cdot f_{V}=0$ yields
$\frac{\partial}{\partial u}\left(U \cdot f_{v}\right)=U_{u} \cdot f_{v}+U \cdot f_{u v}=-S\left(f_{u}\right) \cdot f_{v}+U \cdot f_{u v}=0$ and so $S\left(f_{u}\right) \cdot f_{v}=U \cdot f_{u v}$.

Shape Operator Matrix

We compute the matrix $A=\left[a_{i j}\right]$ of S in the $\left\{f_{u}, f_{v}\right\}$ basis. The columns of A are $S\left(f_{u}\right)$ and $S\left(f_{v}\right)$

$$
\begin{aligned}
a_{11} f_{u}+a_{21} f_{v} & =S\left(f_{u}\right)=-U_{u} \\
a_{12} f_{u}+a_{22} f_{v} & =S\left(f_{v}\right)=-U_{v}
\end{aligned}
$$

Taking dot products with f_{u} and f_{v} yields four equations.

$$
\begin{aligned}
a_{11} f_{u} \cdot f_{u}+a_{21} f_{v} \cdot f_{u} & =-U_{u} \cdot f_{u} \\
a_{11} f_{u} \cdot f_{v}+a_{21} f_{v} \cdot f_{v} & =-U_{u} \cdot f_{v} \\
a_{12} f_{u} \cdot f_{u}+a_{22} f_{v} \cdot f_{u} & =-U_{v} \cdot f_{u} \\
a_{22} f_{u} \cdot f_{v}+a_{22} f_{v} \cdot f_{v} & =-U_{v} \cdot f_{v}
\end{aligned}
$$

The matrix form of these equations is

$$
\left[\begin{array}{cc}
f_{u} \cdot f_{u} & f_{u} \cdot f_{v} \\
f_{u} \cdot f_{v} & f_{v} \cdot f_{v}
\end{array}\right] \times\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{ll}
-U_{u} \cdot f_{u} & -U_{v} \cdot f_{u} \\
-U_{u} \cdot f_{v} & -U_{v} \cdot f_{v}
\end{array}\right]
$$

Shape Operator (continued)

Define $E=f_{u} \cdot f_{u}, F=f_{v} \cdot f_{v}$, and $G=f_{v} \cdot f_{v}$. Diffentiate $U \cdot f_{v}=0$ and $U \cdot f_{u}=0$ with respect to u and v to obtain.

$$
\begin{aligned}
L & =U \cdot f_{u u}=-U_{u} \cdot f_{u} \\
M & =U \cdot f_{u v}=-U_{v} \cdot f_{u}=-U_{u} \cdot f_{v} \\
N & =U \cdot f_{v v}=-U_{v} \cdot f_{v}
\end{aligned}
$$

Substitute into the above matrix equation.

$$
\left[\begin{array}{ll}
E & F \\
F & G
\end{array}\right] \times\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
L & M \\
M & N
\end{array}\right]
$$

Solve

$$
A=\left[\begin{array}{ll}
E & F \\
F & G
\end{array}\right]^{-1} \times\left[\begin{array}{cc}
L & M \\
M & N
\end{array}\right]=\frac{1}{E G-F^{2}}\left[\begin{array}{cc}
M F-L G & N F-M G \\
L F-M E & M F-N E
\end{array}\right]
$$

Normal Curvature

(a)

(b)

- (a) A curve γ in M satisfies $\ddot{\gamma} \cdot U=\dot{\gamma} \cdot S(\dot{\gamma})$.

Proof: $\dot{\gamma} \cdot U=0$ implies $\ddot{\gamma} \cdot U=-\dot{\gamma} \cdot \dot{U}=\dot{\gamma} \cdot S(\dot{\gamma})$.

- Every curve with velocity $\dot{\gamma}$ has the same normal acceleration.
- The curves with unit velocity t provide a canonical formula.
- The normal curvature is defined as $k(t)=S(t) \cdot t$.
- (b) Let γ have velocity t, curvature κ, and normal n.
- $k(t)$ is the projection of $k n$ onto U.
- $k(t)=\kappa n \cdot U=\kappa \cos \phi$ with ϕ the angle between U and n.

Normal Curvature Computation

The shape operator in the direction $x=f_{u} u+f_{v} v$ is

$$
S\left(f_{u} u+f_{v} v\right)=u S\left(f_{u}\right)+v S\left(f_{v}\right)=-U_{u} u-U_{v} v
$$

Using L, M, and N from above,

$$
\begin{aligned}
S(x) \cdot x & =-\left(U_{u} u+U_{v} v\right) \cdot\left(f_{u} u+f_{v} v\right) \\
& =-U_{u} \cdot f_{u} u^{2}-\left(U_{u} \cdot f_{v}+U_{v} \cdot f_{u}\right) u v-U_{v} \cdot f_{v} v^{2} \\
& =L u^{2}+2 M u v+N v^{2}
\end{aligned}
$$

The normal curvature in the direction x is

$$
S\left(\frac{x}{\|x\|}\right) \cdot\left(\frac{x}{\|x\|}\right)=\frac{S(x) \cdot x}{x \cdot x}=\frac{L u^{2}+2 M u v+N v^{2}}{E u^{2}+2 F u v+G v^{2}}
$$

using E, F, and G from above.

Normal Section

- The normal section in direction t is the intersection curve γ of M with the plane through p and tangent to t and to U.
- The curve normal n is collinear with the surface normal U.
- The normal curvature is $k(t)= \pm \kappa$.
- The curve γ provides a good visualization of $k(t)$. It curves away from U when $k(t)<0$ and toward U when $k(t)>0$.

Principal Directions and Curvatures

- The shape operator has real eigen values k_{1} and k_{2} with eigen vectors X_{1} and X_{2} because it is symmetric.
- If $k_{1}>k_{2}$, the normal curvature has a maximum of k_{1} in direction X_{1} and a minimum of k_{2} in direction X_{2}.
- These are called the principal directions and curvatures.

Umbilicals

monkey saddle

- A point with $k_{1}=k_{2}$ is called an umbilical.
- The normal curvature is equal in all directions.
- Every point on a plane is an umbilical with $k=0$.
- Every point on an r-sphere is an umbilical with $k=1 / r$.
- The monkey saddle has an isolated umbilical p with $k=0$ where three zero-curvature curves meet.

Gaussian and Mean Curvature

- The Gaussian curvature is $K=k_{1} k_{2}$.
- It is the determinant of the shape operator

$$
|A|=\left|\left[\begin{array}{ll}
E & F \\
F & G
\end{array}\right]^{-1}\right| \times\left|\left[\begin{array}{cc}
L & M \\
M & N
\end{array}\right]\right|=\frac{L N-M^{2}}{E F-G^{2}}
$$

- The sign of K determines the local shape.
- Surfaces with $K=0$ are generated by sweeping a line.
- The mean curvature is $H=\left(k_{1}+k_{2}\right) / 2$.
- Surfaces with $H=0$ minimize surface area.

Elliptic Point

- The Gaussian curvature is positive.
- The principal curvatures have the same sign.
- The surface lies on one side of the tangent plane.

Parabolic Point

cylinder

cone

- The Gaussian curvature is zero.
- One principal curvature is zero.
- The surface intersects the tangent plane in a line.

Hyperbolic Point

hyperbolic paraboloid

torus

- The Gaussian curvature is negative.
- The principal curvatures have opposite signs.
- The surface intersects the tangent plane in two curves.

Gauss Map

- The Gauss map $N: M \rightarrow S^{2}$ maps a point (u, v) in the parameter space M of a surface to the unit normal at $f(u, v)$.
- The area of the image of N equals the integral of the Gaussian curvature over M.
- This quantity is called the total Gaussian curvature.

Euler Characteristic

$v=4, e=6, f=4$
$v=2, e=4, f=4$
$v=4, e=8, f=4$

- The Euler characteristic of a polyhedron A with v vertices, e edges, and f facets is $\chi(A)=v-e+f$.
- Likewise for a smooth or piecewise smooth surface.
- $\chi=2$ for a sphere and $\chi=0$ for a torus.
- The Euler characteristic is a topological invariant.
- A compact, oriented, boundaryless surface is homeomorphic to a sphere with $k \geq 0$ handles and has $\chi=2-2 k$.

Tangential Curvature

- A curve γ on a surface S has Frenet frame t, n, and b.
- We have studied the normal curvature $k_{n}=n \cdot \gamma^{\prime \prime}$.
- We will now study the geodesic curvature $k_{g}=b \cdot \gamma^{\prime \prime}$.
- k_{g} is the complement of k_{n} because $t \cdot \gamma^{\prime \prime}=t \cdot t^{\prime}=0$.
- k_{g} measures the acceleration tangent to S.

Gauss-Bonnet Theorem

A surface M with boundary δM satisfies

$$
\int_{M} K d A+\int_{\delta M} k_{g} d s=2 \pi \chi(M)
$$

Geodesics

sphere

ellipsoid

A curve γ on $[a, b]$ is a geodesic if $k_{g}(p)=0$ for all $p \in[a, b]$. It is a straightest curve in S.

Equivalently, γ is a critical point of the length functional L with respect to tangential variations. For ϕ a tangent vector field along γ with $\phi(a)=0$ and $\phi(b)=0, \frac{\partial}{\partial \epsilon} L(\gamma+\epsilon \phi)=0$.
γ is a locally shortest curve: every point on γ has a neighborhood in which γ is the shortest curve between every pair of its points.

Geodesic Completeness

ellipsoid

There is a unique geodesic through every point p of a surface in every tangent direction t.

The geodesic is the solution of the ODE $\gamma^{\prime \prime}=0$ with initial conditions $\gamma(0)=p$ and $\gamma^{\prime}(0)=t$.
A surface is complete if every geodesic can be extended indefinitely: it is periodic or converges to a boundary point.

Hopf-Rinow Theorem

The intrinsic distance between two points on a surface is the infimum of the lengths of the surface curves that connect them.
Hopf-Rinow Theorem Every pair of points on a geodesically complete surface is connected by a geodesic whose length equals the intrinsic distance between them.

Discrete Differential Geometry

- Discrete differential geometry generalizes differential geometry to topological manifolds.
- The primary case is polyhedral surfaces.
- We will study their Gaussian curvature and geodesics.

Discrete Differential Geometry: An Applied Introduction, Keenan Crane, online.
Straightest Geodesics on Polyhedral Surfaces, Polthier and Schmies, Siggraph 2006.

Curvature in the Plane

- A plane curve $\gamma:[a, b] \rightarrow \Re^{2}$ parameterized by arc length with normal angle θ and curvature k satisfies $\theta^{\prime}=k$.
- The curvature is the rate of change of the normal angle.
- The total curvature of γ is $\int_{a}^{b} k=\theta(b)-\theta(a)$.
- This equals the length of the image of the Gauss map of γ.

Discrete Curvature in the Plane

vertex curvature

total curvature

- Discrete differential geometry defines curvature on poly-lines.
- The curvature of a vertex is its change in normal angle: the outgoing angle minus the incoming angle, e.g. $k(v)=\theta_{2}-\theta_{1}$.
- The curvature is zero elsewhere.
- The total curvature of a poly-line equals the length of the image of its Gauss map, as in the case of a smooth curve.

Gauss Map of a 3D Triangle Mesh

surface

Gauss map

- Discrete differential geometry defines Gauss maps and Gaussian curvature for 3D triangle meshes.
- A face maps to its normal as before.
- an edge maps to the great circle arc bounded by the normals of the incident faces.
- A vertex maps to the spherical polygon bounded by the arcs of the incident edges.

Gaussian Curvature of a 3D Triangle Mesh

Spherical Vertex
$2 \pi-\Sigma \theta_{1}>0$

Euclidean Vertex $2 \pi-\Sigma \theta_{i}=0$

Hyperbolic Vertex $2 \pi-\Sigma \theta_{1}<0$

- The Gaussian curvature of a point in a 3D triangle mesh is defined as the area of its image in the Gauss map of the mesh.
- The Gaussian curvature is zero on edges and faces.
- The Gaussian curvature of a vertex whose incident faces have interior angles $\theta_{i}, \ldots, \theta_{n}$ is $2 \pi-\sum_{i=1}^{n} \theta_{i}$.
- The total Gaussian curvature equals the area of the image of the Gauss map by construction.

Geodesics on Triangle Meshes

- Geodesics on triangle meshes are piecewise linear with breakpoints at vertices and on edges.
- The geodesics can be shortest curves or straightest curves.
- There is a fast algorithm for computing a shortest geodesic between two points.
- There is no shortest geodesic through a spherical vertex.
- There are a continuum through a hyperbolic vertex.

Straightest Geodesics

- Let p be a point on a piecewise linear curve in a triangle mesh.
- The angle of p is $\theta=2 \pi-c$ with c the curvature of p.
- The curve has left and right angles θ_{l} and θ_{r} with $\theta_{l}+\theta_{r}=\theta$.
- The curve is a straightest geodesic if $\theta_{l}=\theta_{r}$ at every p.

Straightest Geodesics (continued)

- There is a unique straightest geodesic through every point in every direction.
- There can be no straightest geodesic between two points.
- Shortest and straightest geodesics differ solely at vertices.

Straightest Geodesic Curvature

- A point p with angle θ lies on a curve γ.
- The straightest geodesic at p with direction γ^{\prime} is δ.
- The straightest geodesic curvature of γ is the normalized angle between γ and $\delta: k_{g}=\frac{2 \pi}{\theta}\left(\frac{\theta}{2}-\beta\right)$ with $\beta=\theta_{l}$.
- Setting $\beta=\theta_{r}$ reverses the sign of k_{g}.
- A curve is a straightest geodesic iff $k_{g}=0$ at every point.

Parallel Translation

- Integration rules combine tangent vectors at multiple points.
- This operation is trivial in Euclidean spaces.
- Tangent vectors on a smooth surface can be combined in the ambient Euclidean space.
- The integration rules must be modified to stay on the surface.
- Vectors on polyhedral surfaces are transferred to a common base point via parallel translation.
- The resulting integration rules stay on the surface.

Parallel Translation

geodesic curve

general curve

A tangential vector field v is parallel along a straightest geodesic γ if the normalized angle between $v(s)$ and $\gamma^{\prime}(s)$ is constant.
A tangent vector v_{0} with normalized angle α_{0} on a general curve γ defines a unique parallel vector field $\alpha(s)=\alpha_{0}+\int_{0}^{s} k_{g}$.

