Duality (Sections 8.2, 11.4, and 11.5; Cheng 2.3)

Elisha Sacks

Duality (Sec. 8.2)

- The dual of a point $p=\left(p_{x}, p_{y}\right)$ is the line $p^{*}=p_{x} x-p_{y}$.
- The dual of a line $\ell=I_{a} x+I_{b}$ is the point $\ell^{*}=\left(I_{a},-I_{b}\right)$.
- A vertical line does not have a dual.
- The dual of the dual is the original: $\left(p^{*}\right)^{*}=p$ and $\left(\ell^{*}\right)^{*}=\ell$.

Properties of Duality

Property A point p is on a line ℓ iff ℓ^{*} is on p^{*}.
Proof The primal equation is $l_{a} p_{x}+l_{b}=p_{y}$ and the dual equation is $p_{x} l_{a}-p_{y}=-l_{b}$.
Corollary Points p_{1}, \ldots, p_{n} lie on a line ℓ iff ℓ^{*} is the common intersection point of the lines $p_{1}^{*}, \ldots, p_{n}^{*}$.
Property A point p is above a line ℓ iff ℓ^{*} is above p^{*}.
Proof The primal equation is $l_{a} p_{x}+l_{b}<p_{y}$ and the dual equation is $p_{x} l_{a}-p_{y}<-l_{b}$.

Line Segment Duality

dual plane

- The dual of a segment $s=p q$ with $p_{x}<q_{x}$ is $s^{*}=\cup_{a \in s} a^{*}$.
- Let the $p q$ line u be $y=a x+b$.
- We have $p=\left(p_{x}, a p_{x}+b\right)$ and $q=\left(q_{x}, a q_{x}+b\right)$.
- The lines p^{*} and q^{*} intersect at $u^{*}=(a,-b)$.
- s^{*} is the wedge between p^{*} and q^{*}.

Line Segment Duality

primal plane

dual plane

- A line $/$ intersects s iff s^{*} contains I^{*}.
- Lines above p and below q map to the left half of the wedge.
- Lines below p and above q map to the right half of the wedge.
- When $p_{x} \rightarrow-\infty$ and $q_{x} \rightarrow \infty, p^{*}$ and q^{*} become vertical and the wedge converges to the entire plane.

Duality of Upper Hull and Lower Envelope (Sec. 11.4)

primal plane

- A point $a \in P$ is in the upper hull of P iff there is a line I through a that is above every other point $p \in P$.
- The point I^{*} is on the line a^{*} and below every other $p^{*} \in P^{*}$.
- The line a^{*} contains an edge of the lower envelope.
- As / rotates clockwise, /* traverses the edge from right to left.
- When I is the supporting line of a hull edge $a b, I^{*}$ is the envelope vertex $a^{*} \cap b^{*}$.

Duality of Upper Hull and Lower Envelope (continued)

primal plane

- The upper hull vertices are in increasing x order.
- The corresponding lower envelope edges are in increasing slope order from right to left.
- The first and last vertices correspond to unbounded edges.

Duality of Upper Hull and Lower Envelope (concluded)

primal plane

- The lower hull corresponds to the upper envelope of P^{*}.
- The two hulls have the same left and right points p_{l} and p_{r}.
- The two envelopes are disjoint.
- p_{l}^{*} and p_{r}^{*} contain unbounded edges in both envelopes.
- Full duality occurs in the projective plane.

Duality in 3D

- The dual of $p=\left(p_{x}, p_{y}, p_{z}\right)$ is the plane $z=p_{x} x+p_{y} y-p_{z}$.
- A plane parallel to the z axis has no dual.
- The dual of the supporting line of $p q$ is the line $p^{*} \cap q^{*}$.
- A point p is on/above a plane $/$ iff l^{*} is on/above p^{*}.
- Points p_{1}, \ldots, p_{n} lie on a plane $/$ iff I^{*} is the common intersection point of the planes $p_{1}^{*}, \ldots, p_{n}^{*}$.
- The upper hull is dual to the lower envelope.
- a is a hull vertex iff a^{*} contains an envelope facet.
- $a b$ is a hull edge iff $a^{*} \cap b^{*}$ contains an envelope edge.
- a, b, and c are coplanar iff $a^{*} \cap b^{*} \cap c^{*}$ is an envelope vertex.
- Equivalently, a, b, and c are on the boundary of a hull facet.
- The boundary vertices and edges of the hull are dual to the unbounded facets and edges of the envelope.

Voronoi Diagram and Delaunay Triangulation

- The Voronoi diagram and the Delaunay triangulation in dimension d are derivable from the lower convex hull in dimension $d+1$.
- We will study the derivation in dimension $d=2$.
- The $d=2$ algorithms are mainly of theoretical interest because simple optimal algorithms are already available.
- For $d>2$, the convex hull derivations are the standard.

Voronoi Diagram (Sec. 11.5)

- The 2D Voronoi diagram is computed in the $z=0$ plane.
- A point p lifts to the point $p^{\prime}=\left(p_{x}, p_{y}, p \cdot p\right)$ on the paraboloid $z=x^{2}+y^{2}$.
- The tangent plane $h(p)$ at p^{\prime} is $z=2 p_{x} x+2 p_{y} y-p \cdot p$.

Voronoi Diagram (continued)

- Let q be a point in the Voronoi cell of p.
- The distance from q^{\prime} to the point below, $q(p)$, on $h(p)$ is

$$
q \cdot q-2 p \cdot q+p \cdot p=(p-q) \cdot(p-q)=\|p-q\|^{2} .
$$

- The distance to any other site tangent plane is greater.
- q^{\prime} is above the $h(p)$ facet of the upper envelope of the planes.

Voronoi Diagram Algorithm

Lift to $z=0.5\left(x^{2}+y^{2}\right)$, so p^{\prime} is dual to $h(p)$.

1. Compute the lower hull of the lifted sites.
2. Construct the upper envelope of the tangent planes.
3. Project onto the $z=0$ plane.

1D Voronoi Diagram from 2D Upper Envelope

Delaunay Triangulation from Lower Hull (Cheng 2.3)

Lemma 2.1 (Lifting Lemma) The lift of a circle c lies on a plane h. A point inside/outside c lifts to a point below/above h.
Proof Let o and r be the center and radius of c.
Expanding $\|o-p\|^{2}=(o-p) \cdot(o-p)$ yields
$p_{z}^{\prime}=\|p\|^{2}=2 o \cdot p-o \cdot o+\|o-p\|^{2}$.
The equation $z(p)=2 o \cdot p-o \cdot o+r^{2}$ defines a plane h.
The vertical distance from p^{\prime} to h is $\|o-p\|^{2}-r^{2}$.
If p is on $c,\|o-p\|=r$, so p^{\prime} is on h.
If p is inside $c,\|o-p\|<r$, so p^{\prime} is below h.
If p is outside $c,\|o-p\|>r$, so p^{\prime} is above h.

Delaunay Triangulation Algorithm

- A triangle has an empty circle iff every other lifted point lies above the plane of the lifted triangle.
- The lifted triangle is a facet of the lower hull.
- The projection of the lower hull is the Delaunay triangulation.

