Duality (Sections 8.2, 11.4, and 11.5; Cheng 2.3)

Elisha Sacks

Duality (Sec. 8.2)

- The dual of a point $p = (p_x, p_y)$ is the line $p^* = p_x x p_y$.
- The dual of a line $\ell = I_a x + I_b$ is the point $\ell^* = (I_a, -I_b)$.
- A vertical line does not have a dual.
- The dual of the dual is the original: $(p^*)^* = p$ and $(\ell^*)^* = \ell$.

Properties of Duality

Property A point *p* is on a line ℓ iff ℓ^* is on p^* . *Proof* The primal equation is $l_a p_x + l_b = p_y$ and the dual equation is $p_x l_a - p_y = -l_b$.

Corollary Points p_1, \ldots, p_n lie on a line ℓ iff ℓ^* is the common intersection point of the lines p_1^*, \ldots, p_n^* .

Property A point *p* is above a line ℓ iff ℓ^* is above p^* . *Proof* The primal equation is $l_a p_x + l_b < p_y$ and the dual equation is $p_x l_a - p_y < -l_b$.

Line Segment Duality

- The dual of a segment s = pq with p_x < q_x is s^{*} = ∪_{a∈s}a^{*}.
 Let the pq line u be y = ax + b.
- We have $p = (p_x, ap_x + b)$ and $q = (q_x, aq_x + b)$.
- The lines p^* and q^* intersect at $u^* = (a, -b)$.
- s^* is the wedge between p^* and q^* .

Line Segment Duality

- ► A line *l* intersects *s* iff *s*^{*} contains *l*^{*}.
- Lines above p and below q map to the left half of the wedge.
- Lines below p and above q map to the right half of the wedge.
- When p_x → −∞ and q_x → ∞, p^{*} and q^{*} become vertical and the wedge converges to the entire plane.

Duality of Upper Hull and Lower Envelope (Sec. 11.4)

- A point a ∈ P is in the upper hull of P iff there is a line I through a that is above every other point p ∈ P.
- ▶ The point I^* is on the line a^* and below every other $p^* \in P^*$.
- ▶ The line *a*^{*} contains an edge of the lower envelope.
- ▶ As *I* rotates clockwise, *I*^{*} traverses the edge from right to left.
- When *l* is the supporting line of a hull edge *ab*, *l*^{*} is the envelope vertex *a*^{*} ∩ *b*^{*}.

Duality of Upper Hull and Lower Envelope (continued)

- The upper hull vertices are in increasing x order.
- The corresponding lower envelope edges are in increasing slope order from right to left.
- The first and last vertices correspond to unbounded edges.

Duality of Upper Hull and Lower Envelope (concluded)

- ▶ The lower hull corresponds to the upper envelope of *P*^{*}.
- The two hulls have the same left and right points p_l and p_r .
- The two envelopes are disjoint.
- \triangleright p_l^* and p_r^* contain unbounded edges in both envelopes.
- Full duality occurs in the projective plane.

Duality in 3D

- The dual of $p = (p_x, p_y, p_z)$ is the plane $z = p_x x + p_y y p_z$.
- A plane parallel to the z axis has no dual.
- The dual of the supporting line of pq is the line p^{*} ∩ q^{*}.
- A point p is on/above a plane l iff l* is on/above p*.
- Points p₁,..., p_n lie on a plane *l* iff *l** is the common intersection point of the planes p₁*,..., p_n*.
- The upper hull is dual to the lower envelope.
 - a is a hull vertex iff a* contains an envelope facet.
 - *ab* is a hull edge iff $a^* \cap b^*$ contains an envelope edge.
 - ▶ *a*, *b*, and *c* are coplanar iff $a^* \cap b^* \cap c^*$ is an envelope vertex.
 - Equivalently, *a*, *b*, and *c* are on the boundary of a hull facet.
 - The boundary vertices and edges of the hull are dual to the unbounded facets and edges of the envelope.

Voronoi Diagram and Delaunay Triangulation

- The Voronoi diagram and the Delaunay triangulation in dimension d are derivable from the lower convex hull in dimension d + 1.
- We will study the derivation in dimension d = 2.
- The d = 2 algorithms are mainly of theoretical interest because simple optimal algorithms are already available.
- For d > 2, the convex hull derivations are the standard.

Voronoi Diagram (Sec. 11.5)

- The 2D Voronoi diagram is computed in the z = 0 plane.
- A point *p* lifts to the point *p*' = (*p_x*, *p_y*, *p* ⋅ *p*) on the paraboloid *z* = *x*² + *y*².

• The tangent plane h(p) at p' is $z = 2p_x x + 2p_y y - p \cdot p$.

- Let q be a point in the Voronoi cell of p.
- ► The distance from q' to the point below, q(p), on h(p) is $q \cdot q 2p \cdot q + p \cdot p = (p q) \cdot (p q) = ||p q||^2$.
- The distance to any other site tangent plane is greater.
- q' is above the h(p) facet of the upper envelope of the planes.

Voronoi Diagram Algorithm

Lift to $z = 0.5(x^2 + y^2)$, so p' is dual to h(p).

- 1. Compute the lower hull of the lifted sites.
- 2. Construct the upper envelope of the tangent planes.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

3. Project onto the z = 0 plane.

1D Voronoi Diagram from 2D Upper Envelope

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Delaunay Triangulation from Lower Hull (Cheng 2.3)

Lemma 2.1 (Lifting Lemma) The lift of a circle c lies on a plane h. A point inside/outside c lifts to a point below/above h.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof Let o and r be the center and radius of c.

Expanding
$$||o - p||^2 = (o - p) \cdot (o - p)$$
 yields
 $p'_z = ||p||^2 = 2o \cdot p - o \cdot o + ||o - p||^2.$

The equation $z(p) = 2o \cdot p - o \cdot o + r^2$ defines a plane h.

The vertical distance from p' to h is $||o - p||^2 - r^2$.

If p is on c,
$$||o - p|| = r$$
, so p' is on h.

- If p is inside c, ||o p|| < r, so p' is below h.
- If p is outside c, ||o p|| > r, so p' is above h.

Delaunay Triangulation Algorithm

- A triangle has an empty circle iff every other lifted point lies above the plane of the lifted triangle.
- ► The lifted triangle is a facet of the lower hull.
- ► The projection of the lower hull is the Delaunay triangulation.