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Duality (Sec. 8.2)
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I The dual of a point p = (px , py ) is the line p∗ = pxx − py .

I The dual of a line ` = lax + lb is the point `∗ = (la,−lb).

I A vertical line does not have a dual.

I The dual of the dual is the original: (p∗)∗ = p and (`∗)∗ = `.



Properties of Duality
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Property A point p is on a line ` iff `∗ is on p∗.
Proof The primal equation is lapx + lb = py and the dual equation
is px la − py = −lb.

Corollary Points p1, . . . , pn lie on a line ` iff `∗ is the common
intersection point of the lines p∗1 , . . . , p

∗
n.

Property A point p is above a line ` iff `∗ is above p∗.
Proof The primal equation is lapx + lb < py and the dual equation
is px la − py < −lb.



Line Segment Duality
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I The dual of a segment s = pq with px < qx is s∗ = ∪a∈sa∗.
I Let the pq line u be y = ax + b.

I We have p = (px , apx + b) and q = (qx , aqx + b).

I The lines p∗ and q∗ intersect at u∗ = (a,−b).

I s∗ is the wedge between p∗ and q∗.



Line Segment Duality
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I A line l intersects s iff s∗ contains l∗.

I Lines above p and below q map to the left half of the wedge.

I Lines below p and above q map to the right half of the wedge.

I When px → −∞ and qx →∞, p∗ and q∗ become vertical
and the wedge converges to the entire plane.



Duality of Upper Hull and Lower Envelope (Sec. 11.4)
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I A point a ∈ P is in the upper hull of P iff there is a line l
through a that is above every other point p ∈ P.

I The point l∗ is on the line a∗ and below every other p∗ ∈ P∗.

I The line a∗ contains an edge of the lower envelope.

I As l rotates clockwise, l∗ traverses the edge from right to left.

I When l is the supporting line of a hull edge ab, l∗ is the
envelope vertex a∗ ∩ b∗.



Duality of Upper Hull and Lower Envelope (continued)
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I The upper hull vertices are in increasing x order.

I The corresponding lower envelope edges are in increasing
slope order from right to left.

I The first and last vertices correspond to unbounded edges.



Duality of Upper Hull and Lower Envelope (concluded)
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I The lower hull corresponds to the upper envelope of P∗.

I The two hulls have the same left and right points pl and pr .

I The two envelopes are disjoint.

I p∗l and p∗r contain unbounded edges in both envelopes.

I Full duality occurs in the projective plane.



Duality in 3D

I The dual of p = (px , py , pz) is the plane z = pxx + pyy − pz .

I A plane parallel to the z axis has no dual.

I The dual of the supporting line of pq is the line p∗ ∩ q∗.

I A point p is on/above a plane l iff l∗ is on/above p∗.

I Points p1, . . . , pn lie on a plane l iff l∗ is the common
intersection point of the planes p∗1 , . . . , p

∗
n.

I The upper hull is dual to the lower envelope.
I a is a hull vertex iff a∗ contains an envelope facet.
I ab is a hull edge iff a∗ ∩ b∗ contains an envelope edge.
I a, b, and c are coplanar iff a∗ ∩ b∗ ∩ c∗ is an envelope vertex.
I Equivalently, a, b, and c are on the boundary of a hull facet.
I The boundary vertices and edges of the hull are dual to the

unbounded facets and edges of the envelope.



Voronoi Diagram and Delaunay Triangulation

I The Voronoi diagram and the Delaunay triangulation in
dimension d are derivable from the lower convex hull in
dimension d + 1.

I We will study the derivation in dimension d = 2.

I The d = 2 algorithms are mainly of theoretical interest
because simple optimal algorithms are already available.

I For d > 2, the convex hull derivations are the standard.



Voronoi Diagram (Sec. 11.5)
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I The 2D Voronoi diagram is computed in the z = 0 plane.

I A point p lifts to the point p′ = (px , py , p · p) on the
paraboloid z = x2 + y2.

I The tangent plane h(p) at p′ is z = 2pxx + 2pyy − p · p.



Voronoi Diagram (continued)
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I Let q be a point in the Voronoi cell of p.

I The distance from q′ to the point below, q(p), on h(p) is
q · q − 2p · q + p · p = (p − q) · (p − q) = ||p − q||2.

I The distance to any other site tangent plane is greater.

I q′ is above the h(p) facet of the upper envelope of the planes.



Voronoi Diagram Algorithm

Lift to z = 0.5(x2 + y2), so p′ is dual to h(p).

1. Compute the lower hull of the lifted sites.

2. Construct the upper envelope of the tangent planes.

3. Project onto the z = 0 plane.



1D Voronoi Diagram from 2D Upper Envelope
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Delaunay Triangulation from Lower Hull (Cheng 2.3)

Lemma 2.1 (Lifting Lemma) The lift of a circle c lies on a plane
h. A point inside/outside c lifts to a point below/above h.

Proof Let o and r be the center and radius of c .

Expanding ||o − p||2 = (o − p) · (o − p) yields
p′z = ||p||2 = 2o · p − o · o + ||o − p||2.

The equation z(p) = 2o · p − o · o + r2 defines a plane h.

The vertical distance from p′ to h is ||o − p||2 − r2.

If p is on c , ||o − p|| = r , so p′ is on h.

If p is inside c , ||o − p|| < r , so p′ is below h.

If p is outside c , ||o − p|| > r , so p′ is above h.



Delaunay Triangulation Algorithm

34 Delaunay Mesh Generation

Figure 2.4: Every edge on the boundary of a convex triangulation is strongly Delaunay,

because it is always possible to �nd an empty disk that contains its endpoints and no other

vertex.
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Figure 2.5: The parabolic lifting map.

This relationship between Delaunay triangulations and convex hulls has two consequences.

First, it makes many properties of the Delaunay triangulation intuitive. For example, from

the fact that every �nite point set has a polyhedral convex hull, it follows that every �nite

point set has a Delaunay triangulation. Second, it brings to mesh generation the power

of a huge literature on polytope theory and algorithms. For example, every convex hull

algorithm is a Delaunay triangulation algorithm!

The parabolic lifting map sends each point p = (x, y) ∈ R2 to a point p+ = (x, y, x2 +

y2) ∈ R3. Call p+ the lifted companion of p.

Consider the convex hull conv S + of the lifted points S + = {v+ : v ∈ S }. Figure 2.5

illustrates its downward-facing faces. Formally, a face f of conv S + is downward-facing if

no point in conv S + is directly below any point in f , with respect to the z-axis. Call the

collection of downward-facing faces the underside of conv S +. Projecting the underside of

conv S + to the x-y plane (by discarding every point�s z-coordinate) yields the Delaunay sub-

division of S . If S has more than one Delaunay triangulation, this Delaunay subdivision has

Cheng, S., Dey, T. K., & Shewchuk, J. (2012). Delaunay mesh generation : Algorithms and mathematical analysis. CRC Press LLC.
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I A triangle has an empty circle iff every other lifted point lies
above the plane of the lifted triangle.

I The lifted triangle is a facet of the lower hull.

I The projection of the lower hull is the Delaunay triangulation.


