Binary Space Partitions (chapter 12)

Elisha Sacks

Range Queries on Geometric Elements

- Range queries apply to geometric elements beyond points.
- The standard approach is to decompose the domain into regions that intersect a constant number of elements.
- The regions that intersect a query box Q are enumerated and the elements in each region that intersect Q are returned.
- Another application: find all the intersecting pairs of elements.
- kd-trees are a good decomposition for points.
- We will see two decompositions for other types of elements.
- BSP trees use convex regions (this lecture).
- Quadtrees use boxes (chapter 14).

BSP Trees

- A BSP (binary space partition) tree decomposes the plane into convex regions.
- An internal node contains a line that splits its region into the regions of its two children.
- A leaf contains pointers to the inputs that intersect its region.
- Alternately, a leaf contains the input fragments in its region.

Regions

- The region of the root is the plane.
- The region of an internal node is the intersection of the region of its parent with a halfspace of the splitting line of its parent.

Auto-Partitions

A BSP for a set of line segments is an auto-partition if every splitting line is the support line of a segment.

Algorithm

If the input size is less than two, return a leaf containing the input. else

Pick a segment at random and let / be its support line.
Split the segments by I to obtain two sets of fragments.
(I is not in either set.)
Recursively construct the child BSP trees.

Influence of Insertion Order

- The number of splits depends on the segment insertion order.
- (a) Inserting s_{1} splits s_{2} and s_{3}.
- (b) This order has no splits.

Number of Fragments

Lemma 12.1 The expected number of fragments is $O(n \log n)$.
Proof
Let s_{j} be a segment that intersects the support line ℓ of segment s_{i}.
A segment separates s_{i} and s_{j} when it intersects ℓ between them.
Denote the number of intersecting segments by $\operatorname{dist}_{i}\left(s_{j}\right)$.
There are at most two s_{j} with $\operatorname{dist}_{i}\left(s_{j}\right)=k$ for $0 \leq k \leq n-2$.

Number of Fragments (continued)

For the s_{i} insertion to split s_{j}, it must occur before s_{j} and their separating segments are inserted.
This probability is $\frac{1}{\operatorname{dist}_{i}\left(s_{j}\right)+2}$ because each of these segments is equally likely to be first.
The expected number of splits is bounded by

$$
\sum_{j \neq i} \frac{1}{\operatorname{dist}_{i}\left(s_{j}\right)+2} \leq 2 \sum_{k=0}^{n-2} \frac{1}{k+2} \leq 2 \log n
$$

Summing over the n segments yields $n+2 n \log n$ fragments.

Running Time

Theorem 12.2 The auto-partition algorithm runs in expected time $n^{2} \log n$.
Proof The number of recursive calls is bounded by the number of fragments, which is $O(n \log n)$ by Lemma 12.1, and the cost of a call is $O(n)$ excluding recursive calls.

Discussion of Complexity

- The auto-partition algorithm constructs a BSP of size $n \log n$ in expected time $n^{2} \log n$.
- A BSP of size $n \log n$ can be constructed in time $n \log n$.
- n segments can require a BSP of size $n \log n / \log \log n$.
- n spatial triangles can require a BSP of size n^{2}.
- These lower bounds do not occur for typical inputs.
- We will study a theoretical model of this empirical fact.

Scene Density

The density of a set of objects is the smallest λ such that a ball B of diameter d intersects at most λ objects of diameter d or greater.

- The figure shows eight line segments with $\lambda=3$.
- The definition is independent of scale and dimension.
- Density is typically low and independent of input size.
- Designing density sensitive algorithms is worthwhile.

Density Sensitive BSP Construction

- Handle low density shapes of arbitrary complexity.
- Represent an object by the corners of its bounding box.
- The corners, called guards, guide BSP construction.
- Phase 1: construct a quad-BSP tree for the guards.
- Phase 2: insert the objects into this tree.
- Phase 3: refine the leaves with a BSP algorithm.

Guard Lemma

Lemma 12.6 An axis-parallel square that contains k guards intersects at most $k+4 \lambda$ objects.

Proof

- Let σ be an axis-parallel square containing k guards.
- At most k objects have a guard inside σ.
- The guardless objects S^{\prime} have density at most λ.
- We will show that at most 4λ objects in S^{\prime} intersect σ.

Guard Lemma (continued)

- The x-extent or the y-extent of any $o \in S^{\prime}$ contains that of σ.
- The diameter of o exceeds the edge size of σ, so $d(o) \geq d(\sigma) / \sqrt{2}>d(\sigma) / 2$.
- Cover σ with four disks of diameter $d(\sigma) / 2$.
- o intersects at least one disk.
- Each disk intersects at most λ objects in S^{\prime} because their diameters exceed that of the disks.

Phase 1: Guard Quad-BSP Tree Construction

- A quad-BSP tree is a BSP tree with axis parallel split lines.
- We construct a quad-BSP tree with at most k guards per leaf.
- The root region is a box that contains the input objects.
- The figure shows a $k=1$ tree in which each region is split into equal pieces along its longer dimension.
- This is the standard quadtree construction algorithm.

Quadtree Split

A quadtree split divides a rectangle into four congruent rectangles by means of three BSP splits.
Quadtree splits yield overly large trees when guards are clustered.

Adaptive Split

An adaptive split strategy yields $O(n / k)$ leaf nodes.

1. Perform an initial quadtree split.
2. If exactly one of the four rectangles σ contains over k guards
2.1 Reject the quadtree split.
2.2 Shrink σ along its diagonal until σ^{\prime} excludes k guards.

The examples have $k=4$.

Quad-BSP Tree Analysis

Lemma 12.7 Phase 1 produces a BSP tree with $O(n / k)$ leaf nodes each of which intersects at most $k+4 \lambda$ objects.

Proof

- Let $f(m)$ be the number of internal nodes for m guards.
- There are $f(m)+1$ leaf nodes.
- If $m \leq k$, the tree is a leaf and $f(m)=0$.
- If $m>k$, three internal nodes create four rectangles.
- Let the i th rectangle contain m_{i} guards.
- Let $J=\left\{i: 1 \leq i \leq 4\right.$ and $\left.m_{i}>k\right\}$.
- A guard is in at most one rectangle, so $\sum_{i \in J} m_{i} \leq m$.
- $f(m)=3+\sum_{i \in J} f\left(m_{i}\right)$.

Quad-BSP Tree Analysis (continued)

- We will prove that $f(m) \leq 6 m / k-3$ by induction.
- The BSP tree has $O(n / k)$ leafs because $n \leq 4 m$.
- The base case is $m \leq k$, so assume $m>k$.
- If J is empty, $f(m)=3 \leq 6 m / k-3$ because $m>k$.
- If J has one member, an adaptive split occurs, that member contains at most $m-k$ guards, and $f(m) \leq 3+f(m-k) \leq 3+6(m-k) / k-3=6 m / k-3$.
- If J has two or more members, $m_{i}<m$ and so

$$
f(m) \leq 3+\sum_{i \in J} f\left(m_{i}\right) \leq 3+\sum_{i \in J} \frac{6 m_{i}}{k}-3\|J\| \leq \frac{6 m}{k}-3
$$

Quad-BSP Tree Analysis (concluded)

Lemma 12.7 A leaf region intersects at most $k+4 \lambda$ objects.
Proof

- Squares are covered by Lemma 12.6.
- A quadtree split creates square regions.
- A shrinking step creates two squares and two rectangles.
- The exterior of one square σ^{\prime} contains at most k guards.
- Each rectangle $\sigma^{\prime \prime}$ is inside a square in the exterior of σ^{\prime}.

Density Estimation

The density λ is unknown and is hard to compute.
We estimate λ within a factor of two.

1. Set $\lambda=2$.
2. Construct the quad-BSP tree with $k=\lambda$.
3. If no leaf contains more than 5λ fragments, return the tree.
4. Double λ and go to step 2 .

Complexity

We can compute the BSP of n line segments with the density sensitive algorithm using the auto-partition algorithm for phase 3.
Theorem 12.8 The BSP has size $O(n \log \lambda)$.
Proof

- Phase 1 gives a quad-BSP tree with $O(n / \lambda)$ leaves.
- Phase 2 inserts at most 5λ subsegments into each leaf.
- Phase 3 expands each leaf into a subtree of size $O(\lambda \log \lambda)$.

Theorem 12.9 An analogous algorithm constructs a BSP of size $O(n \lambda)$ for $n 3 \mathrm{D}$ triangles.
These results are optimal.

