Planar Subdivision (chapter 2)

Elisha Sacks

Planar Subdivision

- Division of the plane into open regions called faces.
- The region boundary elements are line segments called edges.
- The edge endpoints are called vertices.
- The edges form outer and inner boundary loops.
- The unbounded face has no outer boundary.
- The others have one outer and zero or more inner boundaries.
- Example: face 4 is unbounded; face 3 has one inner boundary.

Euler Formula

- Notation: v vertices, e edges, f faces, c components.
- Euler formula: v e + f = 1 + c.
- This formula is used in many computational geometry proofs.
- It generalizes to polyhedrons and far beyond.

Boundary Representation

- Subdivisions are represented with a boundary representation.
- A vertex stores its coordinates and incident edges.
- An edge *ab* stores its tail vertex *a*, twin edge *ba*, the next edge on its loop, and the face that it bounds.
- A face stores one edge from each of its boundary loops.
- A face is to the left of its boundary edges when they are traversed from tail to head.
- The boundary representation is also called a doubly connected edge list or a winged edge structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example

• The next of edge v_1v_2 is v_2v_3 and both bound face 3.

- The next of edge v₅v₂ is v₂v₄ and both bound face 5.
- The next of edge v₂v₄ is v₄v₂ and both bound face 5.
- This type of edge is called dangling.

Overlay

- Two polygons define a joint subdivision called an overlay.
- Boolean operations yield sets of faces.

►
$$A \cup B = \{1, 2, 3, 4\}$$

$$\blacktriangleright A \cap B = \{2,4\}$$

•
$$A - B = \{1\}$$

•
$$B - A = \{3\}$$

The overlay of two or more subdivisions is defined analogously.

Overlay Algorithm

- 1. Copy the input edges into a new subdivision.
- 2. Compute the next fields of the new edges.
- 3. Split the edges at their intersection points.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

4. Construct the faces.

Computing the New Edges

- Compute the next fields of the new edges. Arrows indicate edges with interiors on left.
- Split the edges at their intersection points. Red arrows indicate sub-edges of these edges. Green dots are new vertices.

Computing the Next Fields

- What if the input subdivisions share a vertex v?
- The output v can be incident on any number of edges.
- Sort the edges clockwise around v.
- The next of an incoming edge is the following outgoing edge.
- Example: the next of av is vb.

Intersection Point Computation

Input: n edges.

- Output: *m* intersection points.
- Worst case: $m = O(n^2)$, so running time is $O(n^2)$.
- Brute force algorithm: test every pair of edges.
- Sweep algorithm: test pairs of edges that see each other.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Output sensitive: $O((n+m)\log n)$.
- Complicated optimal algorithm: $O(n \log n + m)$.

Sweep Algorithm Input

We assume that the input is not degenerate.

- There are three types of degenerate input.
 - A vertex lies on an edge.
 - Three or more edges intersect at a common point.
 - Two collinear edges overlap.
- A fourth type is specific to the sweep algorithm.
 - An edge is parallel to the sweep line.
- Degeneracy can be prevented by input perturbation.
- The textbook handles the first two types of degeneracy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

▶ The algorithm and the analysis are more tedious.

Sweep Algorithm

Sweep a vertical line through the edges.

Track the vertical order of the edges that intersect the sweep.

(日)

э

- 1. (ef) from e.
- 2. (ef, ab) from a.
- 3. (*cd*, *ef*, *ab*) from *c*.
- 4. (cd, ab) from f.
- 5. (ab, cd) from v.
- Check incident edges for intersection.
 - Check ef and ab at a; no intersection.
 - Check cd and ab at f; compute v.
 - Check gh and ab at v; compute w.

Implementation

- Sweep list: a balanced tree of edges in vertical order.
- Initialize an empty sweep list.
- Events: start endpoint, end endpoint, intersection point.
- Two edges intersect at an intersection point.
- Initialize a priority queue with the edge endpoints.
- Queue order is x-order with ends before starts for equal x.
- Process the next event until the queue is empty.
 - Add and remove edges or swap two edges.
 - Check the newly adjacent pairs of edges for intersection.
 - Add the intersection points to the queue.
- Two edges can become incident many times, but only one intersection event should be created.

Computing the Vertical Order

► The vertical order is computed at the left endpoint a of an edge ab with respect to an edge ef with e_x ≤ a_x < f_x.

ヘロマ ヘ団マ ヘヨマ ・

э

- disjoint edges: ab is above ef if aef is a left turn.
- shared tail: vd is above vb if dvb is a left turn.
- The order flips when edges swap.

Edge Split

Edges ab and cd intersect at the point v.

A v vertex with four incident edges is created.

The twin fields of *ab*, *ba*, *cd*, and *dc* are set to these edges yielding edges *av*, *bv*, *cv*, *dv*, and their twins.

The next fields of these eight edges are set, e.g. the next of av is vc and the next of vc is cg.

- The edges that are split are in the event queue.
- The edge split invalidates them.
- Example: ab becomes av, which does not intersect gh.

(日)

э

How is this handled?

- The edges that are split are in the event queue.
- The edge split invalidates them.
- Example: ab becomes av, which does not intersect gh.

イロト イヨト イヨト

э

- How is this handled?
- Option 1: update the event queue.

- The edges that are split are in the event queue.
- The edge split invalidates them.
- Example: ab becomes av, which does not intersect gh.
- How is this handled?
- Option 1: update the event queue.
- Option 2: record the split points and split after the sweep.

イロト イボト イヨト イヨト

э

- The edges that are split are in the event queue.
- The edge split invalidates them.
- Example: ab becomes av, which does not intersect gh.
- How is this handled?
- Option 1: update the event queue.
- Option 2: record the split points and split after the sweep.
- Option 3: store the twins in the event queue, e.g. ba and dc.

Correctness

The sweep algorithm finds all the edge intersection points.

Proof

Suppose edges *ab* and *cd* intersect at *v* and every intersection point *u* with $u_x < v_x$ is found.

The sweep order is correct after the last event w with $w_x < v_x$.

Edges ab and cd are adjacent in the sweep after the w update because they are adjacent at v_x and no events intervene.

The intersection point v is found at w if not earlier.

Complexity

There are 2n endpoint events and m intersection point events.

- Processing an event takes O(log n) time.
 - O(log n) to update the queue.
 - O(log n) to update the sweep.
 - O(1) to check at most two newly adjacent pairs.
- The running time is $O((n + m) \log n)$.

Face Construction

- 1. Form the edge loops.
- 2. Classify each loop as an outer or an inner boundary.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 3. Each outer boundary defines a bounded face.
- 4. Assign the inner boundaries to their faces.

Edge Loops

An edge loop is represented by one of its edges.

Algorithm

- $1. \ \mbox{mark}$ the edges as not traversed
- 2. visit every edge e
- 3. if e is not traversed
 - 3.1 add e to the output
 - 3.2 mark the edges in the *e* loop as traversed

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Loop Classification

- A loop is as an outer or an inner boundary.
- It is outer if a left turn occurs at its leftmost vertex.

Examples

- *abchi* is outer because of *b*.
- aihcbdjk is outer because of b.
- fge is inner because of g.
- Another vertex can give the wrong answer, e.g. chi.
- The vertex can be extremal in any direction.

Dangling Edges

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

- Loops with dangling leftmost edges are inner.
- ▶ The left turn is degenerate (an identity).

Face Construction Algorithm

1. Construct an unbounded face with a null outer boundary.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 2. Construct a face f for each outer loop representative e.
 - 2.1 Set the outer boundary of f to e.
 - 2.2 Set the face of each loop edge to f.
- 3. For each inner loop representative e
 - 3.1 Find the face f that contains e.
 - 3.2 Add e to the inner boundary list of f.
 - 3.3 Set the face of each loop edge to f.

Face Finding

- The sweep algorithm records the edge above each vertex.
- Visit the inner boundaries in decreasing highest vertex order.
- A boundary belongs to the face of the edge above its vertex.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The face pointer of that edge has already been set.

Example

1. Assign the *ab* boundary to face 0 because no edge is above.

- 2. Assign the *de* boundary to face 1 because *ba* is above.
- 3. Assign the *gh* boundary to face 1 because *cb* is above.
- 4. Assign the *ij* boundary to face 1 because *fd* is above.