Homework 2 Solution

Elisha Sacks
Problem 1

What are the degenerate inputs?

The point a is a vertex p or is on an edge pq of the polygon P.
When is a predicate degenerate on a nondegenerate input?

The ray $a + ku$ contains a vertex or an edge of P.
Specify the algorithm in English.

1. set \(r = -1 \) and set \(u \) to a random vector
2. for each edge \(pq \) of \(P \)
 3. if \(a + ku \) intersects \([p, q)\)
 3.1 if \(a \) is collinear with \(pq \) return 0
 3.2 if \(u \) points into the opposite side of \(pq \) from \(a \)
 set \(r = -r \)
4. return \(r \)
Problem 4: ACP implementation

```cpp
int pointInPoly (Point *a, const Points &pts)
{
    PTR<Point> u = new Point(1, 1);
    int r = -1;
    unsigned int n = pts.size();
    for (unsigned int i = 0u; i < n; ++i) {
        unsigned int j = (i + 1u)%n;
        int s = rayEdgeIntersection(a, u,
                                     pts[i], pts[j]);
        if (s == 0)
            return 0;
        else if (s == 1)
            r = -r;
    }
    return r;
}
```
Problem 4 (continued)

```c
int rayEdgeIntersection (Point *a, Point *u, Point *p, Point *q)
{
    int s1 = PointRaySide(p, a, u),
            s2 = PointRaySide(q, a, u);
    if (s1*s2 == 1 || s1 != 0)
        return -1;
    int s3 = LeftTurn(p, q, a),
            s4 = PointRaySide(p, q, u);
    return -s3*s4;
}
```
Problem 4 (continued)

class PointRaySide : public Primitive {
 Point *p, *a, *u;

 DeclareSign {
 PV2<N> pp = p->get<N>(), aa = a->get<N>(),
 uu = u->get<N>();
 return uu.cross(pp - aa);
 }

 public:
 PointRaySide (Point *p, Point *a, Point *u)
 : p(p), a(a), u(u) {}
};