Homework 1 Solution

Elisha Sacks

Problem 1: Circle Through Three Points

- The perpendicular bisector of $a b$ is $p+k u$ with $p=(a+b) / 2$ and $u=\left(b_{y}-a_{y}, a_{x}-b_{x}\right)$.
- Likewise, $q+I v$ for $b c$.
- The center o is the intersection point of the bisectors.
- Solve $(p+k u-q) \times v=0$ for $k=(q-p) \times v / u \times v$.
- If the points are collinear, $u \times v=0$ and there is no solution.

Problem 1: ACP Code

class CircleCenter : public Point \{ Point *a, *b, *c;

DeclareCalculate (PV2) \{
PV2 $<\mathrm{N}>$ aa $=a->$ get $<\mathrm{N}>()$,
$\mathrm{bb}=\mathrm{b}->$ get $<\mathrm{N}>()$,
$c c=c->g e t<N>()$,
$p=(a a+b b) / 2, q=(b b+c c) / 2$,
$u(b b . y-a a . y, a a . x-b b . x)$,
$\mathrm{v}(\mathrm{cc} . \mathrm{y}-\mathrm{bb} . \mathrm{y}, \mathrm{bb} . \mathrm{x}-\mathrm{cc} . \mathrm{x})$;
$N k=(q-p) . \operatorname{cross}(v) / u . \operatorname{cross}(v) ;$
return $\mathrm{p}+\mathrm{k} * \mathrm{u}$;
\}

public:

CircleCenter (Point *a, Point *b, Point *c)

$$
: a(a), b(b), c(c)\{ \}
$$

\};

Problem 2: Ray/Line Segment Intersection

When does the ray $a+k u$ intersect the line segment $p q$?

Problem 2: Ray/Line Segment Intersection

When does the ray $a+k u$ intersect the line segment $p q$?

1. p and q are on opposite sides of $a+k u$.

Problem 2: Ray/Line Segment Intersection

When does the ray $a+k u$ intersect the line segment $p q$?

1. p and q are on opposite sides of $a+k u$.
2. a is on one side of $p q$ and u points into the other side.

How are these tests performed?

1. $\operatorname{sign}(u \times(p-a)) \neq \operatorname{sign}(u \times(q-a))$
2. $\operatorname{sign}((a-p) \times(q-p)) \neq \operatorname{sign}(u \times(q-p))$

Problem 3: Circle/Line Segment Intersection

- The distance from o to the $a b$ line is less than r : $-r<\frac{n}{\|n\|} \cdot(o-a)<r$ with $n=\left(b_{x}-a_{x}, a_{y}-b_{y}\right)$.
- Squaring yields $(n \cdot(o-a))^{2}<(n \cdot n) r^{2}$.
- Points a and b are outside the circle: $(a-o) \cdot(a-o)>r^{2}$ and $(b-o) \cdot(b-o)>r^{2}$.
- Points a and b are on opposite sides of the line through o and tangent to $n: \operatorname{sign}(n \times(a-o))=-\operatorname{sign}(n \times(b-o))$.

Problem 4: 3D Triangle Intersection

Two triangles intersect when an edge of one intersects the interior of the other.
An edge ef intersects a triangle $a b c$ when the intersection point of ef with the $a b c$ plane is inside $a b c$.
The intersection point, $p=e+k u$ with $u=f-e$, satisfies $n \cdot(e+k u-a)=0$ with $n=(a-b) \times(a-c)$. It lies on ef when $0<k<1$.

Let p^{\prime} be the projection of p onto the coordinate plane of the largest magnitude component of n, e.g. $p^{\prime}=\left(p_{x}, p_{y}\right)$ when $\left|n_{z}\right|$ is largest. Apply the 2D point-in-triangle test $\operatorname{LT}\left(a^{\prime}, b^{\prime}, p^{\prime}\right)>0$, $\operatorname{LT}\left(b^{\prime}, c^{\prime}, p^{\prime}\right)>0$, and $\operatorname{LT}\left(c^{\prime}, a^{\prime}, p^{\prime}\right)>0$.

Degenerate Cases

1. ef intersects an abc edge: one of the LT is zero.
2. ef contains an $a b c$ vertex: two of the LT are zero.
3. e or f is in abc: $k=0$ or $k=1$.
4. e or f is on an abc edge: tests 1 and 3 .
5. e or f is an $a b c$ vertex: tests 2 and 3 .
6. e and f are in the abc plane: $n \cdot u=0$, project and compute 2D edge/edge intersections.
