
January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

481

Documenting Conventions

Lecture 9

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

501

Javadoc

 /**

 * Class description goes here.

 *

 * @version 1.82 18 Mar 1999

 * @author Firstname Lastname

 */

 public class Blah extends SomeClass {

 /* A class implementation comment can go here. */

 /** classVar1 documentation comment */

 public static int classVar1;

 /**

 * classVar2 documentation comment that happens to be

 * more than one line long

 */

 private static Object classVar2;

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

502

Javadoc

 /** instanceVar1 documentation comment */

 public Object instanceVar1;

 /** instanceVar2 documentation comment */

 protected int instanceVar2;

 /** instanceVar3 documentation comment */

 private Object[] instanceVar3;

 /**

 * ...constructor Blah documentation comment...

 */

 public Blah() {

 // ...implementation goes here...

 }

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

503

Javadoc

 /**

 * ...method doSomething documentation comment...

 */

 public void doSomething() {

 // ...implementation goes here...

 }

 /**

 * ...method doSomethingElse documentation comment...

 * @param someParam description

 */

 public void doSomethingElse(Object someParam) {

 // ...implementation goes here...

 }

 }

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

504

How To Write Unmaintainable Code

Last updated Saturday, 12-Feb-2000 11:06:30 PDT

 Roedy Green

©1997-2000 Canadian Mind Products.

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

505

How To Write Unmaintainable Code

General Principles

 To foil the maintenance programmer, you have to understand how he thinks. He has your
giant program. He has no time to read it all, much less understand it. He wants to
rapidly find the place to make his change, make it and get out and have no unexpected
side effects from the change.

 He views your code through a tube taken from the center of a roll of toilet paper. He
can only see a tiny piece of your program at a time. You want to make sure he can never
get the big picture from doing that. You want to make it as hard as possible for him to
find the code he is looking for. But even more important, you want to make it as
awkward as possible for him to safely ignore anything.

 You might get the idea that every language feature makes code unmaintainable -- not
so, only if properly misused.

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

506

How To Write Unmaintainable Code

Specific Techniques

 1. Lie in the comments. You don't have to actively lie, just fail to keep comments as up to
date with the code.

 2. Pepper the code with comments like /* add 1 to i */ however, never document wooly
stuff like the overall purpose of the package or method.

 3. Make sure that every method does a little bit more (or less) than its name suggests.
As a simple example, a method named isValid(x) should as a side effect convert x to
binary and store the result in a database.

 4. Use acronyms to keep the code terse. Real men never define acronyms; they
understand them genetically.

 5. In the interests of efficiency, avoid encapsulation. Callers of a method need all the
external clues they can get to remind them how the method works inside.

 6. If, for example, you were writing an airline reservation system, make sure there are at
least 25 places in the code that need to be modified if you were to add another airline.
Never document where they are. People who come after you have no business modifying
your code without thoroughly understanding every line of it.

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

507

How To Write Unmaintainable Code

 7. In the name of efficiency, use cut/paste/clone/modify. This works much

faster than using many small reusable modules.

 8. Never put a comment on a variable. Facts about how the variable is used, its

bounds, its legal values, its implied/displayed number of decimal points, its

units of measure, its display format, its data entry rules (e.g. total fill, must

enter), when its value can be trusted etc. should be gleaned from the

procedural code. If your boss forces you to write comments, lard method

bodies with them, but never comment a variable, not even a temporary!

 9. Try to pack as much as possible into a single line. This saves the overhead of

temporary variables, and makes source files shorter by eliminating new line

characters and white space. Tip: remove all white space around operators.

Good programmers can often hit the 255 character line length limit imposed

by some editors. The bonus of long lines is that programmers who cannot read

6 point type must scroll to view them.

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

508

How To Write Unmaintainable Code

 10. Cd wrttn wtht vwls s mch trsr.

 When using abbreviations inside variable or method names, break the
boredom with several variants for the same word, and even spell it out
longhand once in while. This helps defeat those lazy bums who use text
search to understand only some aspect of your program. Consider variant
spellings as a variant on the ploy, e.g. mixing International colour, with
American color and dude-speak kulerz. If you spell out names in full,
there is only one possible way to spell each name. These are too easy for
the maintenance programmer to remember. Because there are so many
different ways to abbreviate a word, with abbreviations, you can have
several different variables that all have the same apparent purpose. As
an added bonus, the maintenance programmer might not even notice they
are separate variables.

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

509

How To Write Unmaintainable Code

 11. Never use an automated source code tidier (beautifier) to keep your
code aligned. Lobby to have them banned them from your company on
the grounds they create false deltas in PVCS (version control tracking)
or that every programmer should have his own indenting style held
forever sacrosanct for any module he wrote. Insist that other
programmers observe those idiosyncratic conventions in "his " modules.
Banning beautifiers is quite easy, even though they save the millions of
keystrokes doing manual alignment and days wasted misinterpreting
poorly aligned code. Just insist that everyone use the same tidied
format, not just for storing in the common repository, but also while
they are editing. This starts an RWAR and the boss, to keep the peace,
will ban automated tidying. Without automated tidying, you are now free
to accidentally misalign the code to give the optical illusion that bodies of
loops and ifs are longer or shorter than they really are, or that else
clauses match a different if than they really do. e.g.

 if(a)

 if(b)x = y;

 else x = z;

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

510

How To Write Unmaintainable Code

 13. Never put in any { } surrounding your if/else blocks unless they are
syntactically obligatory. If you have a deeply nested mixture of if/else
statements and blocks, especially with misleading indentation, you can
trip up even an expert maintenance programmer.

 15. Use very long variable names or class names that differ from each
other by only one character, or only in upper/lower case. An ideal
variable name pair is swimmer and swimner. Exploit the failure of most
fonts to clearly discriminate between ilI1| or oO08 with identifier pairs
like parselnt and parseInt or D0Calc and DOCalc. l is an exceptionally
fine choice for a variable name since it will, to the casual glance,
masquerade as the constant 1. Create variable names that differ from
each other only in case e.g. HashTable and Hashtable.

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

511

How To Write Unmaintainable Code

 16. Wherever scope rules permit, reuse existing unrelated variable names. Similarly,
use the same temporary variable for two unrelated purposes (purporting to save
stack slots). For a fiendish variant, morph the variable, for example, assign a value
to a variable at the top of a very long method, and then somewhere in the middle,
change the meaning of the variable in a subtle way, such as converting it from a 0-
based coordinate to a 1-based coordinate. Be certain not to document this change
in meaning.

 17. Use lower case l to indicate long constants. e.g. 10l is more likely to be mistaken
for 101 that 10L is.

 18. Ignore the conventions in Java for where to use upper case in variable and class
names i.e. Classes start with upper case, variables with lower case, constants are
all upper case, with internal words capitalised. After all, Sun does (e.g. instanceof
vs isInstanceOf, Hashtable). Not to worry, the compiler won't even issue a
warning to give you away. If your boss forces you to use the conventions, when
there is any doubt about whether an internal word should be capitalised, avoid
capitalising or make a random choice, e.g. use both inputFileName and
outputfilename. You can of course drive your team members insane by inventing
your own insanely complex naming conventions then berate others for not following
them. The ultimate technique is to create as many variable names as possible that
differ subtly from each other only in case.

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

512

How To Write Unmaintainable Code

 19. Never use i for the innermost loop variable. Use anything but. Use i
liberally for any other purpose especially for non-int variables. Similarly
use n as a loop index.

 20. Never use local variables. Whenever you feel the temptation to use one,
make it into an instance or static variable instead to unselfishly share it
with all the other methods of the class. This will save you work later
when other methods need similar declarations. C++ programmers can go a
step further by making all variables global.

 21. Never document gotchas in the code. If you suspect there may be a bug
in a class, keep it to yourself. If you have ideas about how the code
should be reorganised or rewritten, for heaven's sake, do not write them
down. Remember the words of Thumper "If you can't say anything nice,
don't say anything at all". What if the programmer who wrote that code
saw your comments? What if the owner of the company saw them? What
if a customer did? You could get yourself fired.

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

513

How To Write Unmaintainable Code

 22.To break the boredom, use a thesaurus to look up as much alternate vocabulary as
possible to refer to the same action, e.g. display, show, present. Vaguely hint there is
some subtle difference, where none exists. However, if there are two similar
functions that have a crucial difference, always use the same word in describing both
functions (e.g. print to mean write to a file, and to a print on a laser, and to display on
the screen). Under no circumstances, succumb to demands to write a glossary with the
special purpose project vocabulary unambiguously defined. Doing so would be
unprofessional breach of the structured design principle of information hiding.

 23. In naming functions, make heavy use of abstract words like it, everything, data,
handle, stuff, do, routine, perform and the digits e.g. routineX48,
PerformDataFunction, DoIt, HandleStuff and do_args_method.

 24. In Java, all primitives passed as parameters are effectively read-only because they
are passed by value. The callee can modify the parameters, but that has no effect on
the caller's variables. In contrast all objects passed are read-write. The reference is
passed by value, which means the object itself is effectively passed by reference. The
callee can do whatever it wants to the fields in your object. Never document
whether a method actually modifies the fields in each of the passed parameters.
Name your methods to suggest they only look at the fields when they actually change
them.

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

514

How To Write Unmaintainable Code

 27. I am going to let you in on a little-known coding secret. Exceptions are a pain in
the behind. Properly-written code never fails, so exceptions are actually
unnecessary. Don't waste time on them. Subclassing exceptions is for
incompetents who know their code will fail. You can greatly simplify your program
by having only a single try/catch in the entire application (in main) that calls
System.exit(). Just stick a perfectly standard set of throws on every method
header whether they could throw any exceptions or not.

 31. Nest as deeply as you can. Good coders can get up to 10 levels of () on a single
line and 20 { } in a single method. C++ coders have the additional powerful option of
preprocessor nesting totally independent of the nest structure of the underlying
code. You earn extra Brownie points whenever the beginning and end of a block
appear on separate pages in a printed listing.

 Wherever possible, convert nested ifs into nested [? :] ternaries.

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

515

How To Write Unmaintainable Code

 29. If you have an array with 100 elements in it, hard code the literal 100 in as many
places in the program as possible. Never use a static final named constant for the 100,
or refer to it as myArray.length. To make changing this constant even more difficult,
use the literal 50 instead of 100/2, or 99 instead of 100-1. You can futher disguise the
100 by checking for a == 101 instead of a > 100 or a > 99 instead of a >= 100.

 Consider things like page sizes, where the lines consisting of x header, y body, and z
footer lines, you can apply the obfuscations independently to each of these and to their
partial or total sums.

 These time-honoured techniques are especially effective in a program with two
unrelated arrays that just accidentally happen to both have 100 elements. There are
even more fiendish variants. To lull the maintenance programmer into a false sense of
security, dutifully create the named constant, but very occasionally "accidentally" use
the literal 100 value instead of the named constant. Most fiendish of all, in place of the
literal 100 or the correct named constant, sporadically use some other unrelated named
constant that just accidentally happens to have the value 100, for now. It almost goes
without saying that you should avoid any consistent naming scheme that would associate
an array name with its size constant.

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

516

How To Write Unmaintainable Code

 43. Keep all of your unused and outdated methods and variables around in your code. After
all - if you needed to use it once in 1976, who knows if you will want to use it again
sometime? Sure the program's changed since then, but it might just as easily change
back, you"don't want to have to reinvent the wheel" (supervisors love talk like that). If
you have left the comments on those methods and variables untouched, and sufficiently
cryptic, anyone maintaining the code will be too scared to touch them.

45. Reverse the parameters on a method called drawRectangle(height, width) to
drawRectangle(width, height) without making any change whatsoever to the name of the
method. Then a few releases later, reverse it back again. The maintenance programmers
can't tell by quickly looking at any call if it has been adjusted yet. Generalisations are
left as an exercise for the reader.

46. Instead of using a parameters to a single method, create as many separate methods as
you can. For example instead of setAlignment(int alignment) where alignment is an
enumerated constant, for left, right, center, create three methods: setLeftAlignment,
setRightAlignment, and setCenterAlignment. Of course, for the full effect, you must
clone the common logic to make it hard to keep in sync.

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

517

How To Write Unmaintainable Code

48. Declare every method and variable public. After all, somebody, sometime might want to
use it. Once a method has been declared public, it can't very well be retracted, now can
it? This makes it very difficult to later change the way anything works under the
covers. It also has the delightful side effect of obscuring what a class is for. If the
boss asks if you are out of your mind, tell him you are following the classic principles of
transparent interfaces.

 55. Java offers great opportunity for obfuscation whenever you have to convert. As a
simple example, if you have to convert a double to a String, go circuitously, via Double
with new Double(d).toString() rather than the more direct Double.toString(d). You can,
of course, be far more circuitous than that! Avoid any conversion techniques
recommended by the Conversion Amanuensis. You get bonus points for every extra
temporary object you leave littering the heap after your conversion.

 57. Use exceptions for non-exceptional conditions. Routinely terminate loops with an
ArrayIndexOutOfBoundsException. Pass return standard results from a method in an
exception.

January 02, 2009

O
 b

 j e c t O
 r i e n

 t e d
 S

 o
 f t w

 a
 r e E

 n
 g

 i n
 e e r i n

 g

518

How To Write Unmaintainable Code

60. Use octal constants. Smuggle them into a list of decimal numbers like this:

 array = new int []

 {

 111,

 120,

 013,

 121,

 };

 72.If you cannot find the right English word to convey the meaning of a temporary
variable (and you ignore the other suggestions about not giving meaningful names to
variables), you may use a foreign language word as the name of the variable. For
example, instead of using variable "p" for a "point", you may use "punkt", which is the
German word for it. Maintenance coders without your firm grasp of German will enjoy
the multicultural experience of deciphering the meaning. It breaks the tedium of an
otherwise tiring and thankless job.

