=
rQ
-
=
o
o
-
-
=
S

XP

extreme programming

Lecture 8

January 02, 2009 448

XP

@ EXtreme Programming explained: embrace change
by Kent Beck, Addison Wesley, September 1999.

@ Whatis XP?

a light-weight methodology for small o medium sized teams

developing software in the face of vague and rapidly changing
requirements

@ Why XP?

traditional software development methodologies are too rigid and
over-constraining,

they do not work for small projects,
encourage "if there's a problem throw more people at it" thinking.
@ Is XPareligion?

January 02, 2009 449

XP

@ XP in context
Kent Beck has a Smalltalk background
® He is part of the Design Pattern community
He has worked with Fowler on Refactoring

@ XP and traditional Methodologies
XP runs counter to almost all software engineering practice,
XP is not a solution for all problems (mostly for small teams),
* XP is programmer friendly

Suradauisu

January 02, 2009 450

Why XP ?

% @ The Risks of Software Development

Schedule slips — the delivery date is always six months in the future
* Project canceled — after many slips, project canned

System goes sour — after a couple of years of operation and some changes,
bugs start to appear

Defect rate — so buggy that it is not used

Business misunderstood —software does not answer all the right questions

=
ra
-
=
o
[
-
—
=
el

Business changes — the system answers the wrong (out of date) questions
False feature rich — lots of unused features

Staff turnover — where have all the good programmers gone?
January 02, 2009 451

Why XP ?

@ XP to the rescue

® Schedule slips
® short release cycles to limit the scope of slips
B within release XP uses 1 to 4 wks customer-requested feature iterations
® within an iteration, 1-3 day tasks
® implement most important features first, to minimize the impact of slips
® Project canceled

® Customer involvement to choose the smallest possible release, to minimize potential
bottlenecks and maximize software value.

* System goes sour
B create and maintain a comprehensive suite of tests
B run tests after every change
Defect rate
B unit test (programmer defined)
® functional tests (user defined)

Suradauisu

January 02, 2009 452

Why XP ?

% & XP to the rescue

Business misunderstood
m customer is an integral part of the tfeam
m specification continuously refined
Business changes
® shorter release cycles imply less change during development
® unimplemented features can be replaced at no cost
* False feature rich
® only highest priority tasks are addressed
Staff turnover

® religion

=
ra
-
=
o
[
-
—
=
el

January 02, 2009 453

The XP premise

@ The cost of change plays a key role in most software engineering
methodologies

Cost of change

Suradauisu

REQUIREMENTS ANALYSIS DESIGN IMPLEMENTATION TESTING PRODUCTION

January 02, 2009 454

The XP premise

@ What if the cost of change did not rise exponentially?

Cost of change

—

=
rQ
-
=
o
o
-
-
=
S

TIME

January 02, 2009 455

The XP premise

@ How can the cost of change be contained ?

® Objects (and dynamic binding)
® Object databases (for persistence)

but also
® Simple designs with no unused generality
B Automated tests to catch any accidental behavioral changes

® Experience in modifying designs

Suradauisu

January 02, 2009 456

The XP premise

@ How does the premise affect software development?

Instead of making big decisions early and little ones late,

XP makes each decision quickly, backs them with tests,

and is also prepared to modify designs.

=
ra
-
=
o
o
-
—
=
el

January 02, 2009 457

The Basics

@ XP relies on 12 principles that are used as guides during the
development process.

@ XP separates software development into 4 activities, these are
roles a software engineer can play

@ XP advocates 12 practices that describe how to approach the
development process

January 02, 2009 458

The 12 XP principles

Rapid feedback
Assume simplicity
Incremental change
Embracing change
Quality work

Small initial investment
Concrete experiments
Open, honest communication
. Accepted responsibility
10 Local adaptation

11. Travel light

12. Honest measurements

VNS OA N

January 02, 2009 459

The 12 XP principles

1. Rapid feedback

generate feedback, interpret it and put experience in the system as
frequently as possible

® business learns the benefits and shortcoming of the systems
programmers lean how to best test, design, implement
* seconds/minutes instead of weeks/months

2. Assume simplicity
do not design for reuse

plan for today and trust your ability to add complexity in the future

Suradauisu

January 02, 2009 460

The 12 XP principles

3. Incremental change
designs change a little at a time
plans change a little at a time
teams change a little at a time

4. Embracing change

* best strategies preserve most options while solving the pressing
problems

=
rQ
-
=
o
o
-
-
=
S

January 02, 2009 461

The 12 XP principles

5. Quality of work

quality is not a free variable: the only possible values are "excellent”
and “insanely excellent”

6. Small initial investment

* tight budgets force programmers and customers to focus on
essentials

avoid comfort

7. Concrete experiments
every abstract decision should be tested
the result of a design session should be a series of experiements

Suradauisu

January 02, 2009 462

The 12 XP principles

8. Open, honest communication
deliver the bad news early

9. Accepted responsibility
responsibilities should not be given, they should be accepted

10. Local adaptation
#* there are no fixed rules

11. Travel light
® keep things small, maintain only the essential

=
rQ
-
=
o
o
-
-
=
S

11. Honest measurements
* strive for accurate measurement of productivity

January 02, 2009 463

The 4 XP activities

@ CODING

coding as learning
coding as communication
code as end result

code as specification

Suradauisu

January 02, 2009 464

The 4 XP activities

@ TESTING
anything that can not be measured does not exist

without test, software is useless

tests are not only for functional requirements they are also for
performance and adherence to standards

* "test infected" -- do not code before having tests

write only tests that could possibly fail (but beware about that
possibly)

=
rQ
-
=
o
o
-
-
=
S

* test keep the program alive longer

testing improves productivity

January 02, 2009 465

The 4 XP activities

@ LISTENING
listening to customers

find rules that encourage useful communication

find rules that discourage useless communication

Suradauisu

January 02, 2009 466

The 4 XP activities

@ DESIGNING

organize the logic of the system
good design ensures that every piece of logic has only one home

good design allows the extension of the system with changes in only
one place

bad design is seen when one modification requires many changes

* complexity is a source of bad design

=
rQ
-
=
o
o
-
-
=
S

design is a daily activity of all programmers

January 02, 2009 467

The 12 XP practices

1. The Planning Game — quickly determine scope of next release

2. Small releases — put a simple system in production quickly then release new version on
a short cycle

3. MeTaphor‘ — guide development with a simple shared story

4, Simple design — system should be as simple as possible, complexity should be removed
if at all possible

Testing — continually write unit tests, customers write functional tests
RefClC'l'Ol"ing — restructure the system without changing behavior
Pair programming — all code written with 2 programmer at 1 machine
Collective ownership — anyone can change code anywhere anytime

o 0 N oo

Continuous integration — integrate and build many times a day
10. 40-hour week — work no more than 40h/wk as a rule
11. On-site customer — include a real, live user on the team full time

12. Coding standards — code in accord. to rules emphasizing communication
January 02, 2009 468

The 12 XP practices

@ The Planning Game

® Business people decide about
= Scope -- how much of the problem must be solved to have a valuable product
= Priority -- which features take precedence
® Composition of releases -- how much do we put in each release
® Dates of releases -- what the dates at which we need to show something

® Technical people decide about
® Estimates -- how long will a feature take to implement

® Consequences -- choices of the software environment and their impact on the
product

® Process --how will the team be organized

® Detailed scheduling -- which are the tasks that are the riskiest, move them first,
accommodate business

=
rQ
-
=
o
o
-
-
=
S

January 02, 2009 469

The 12 XP practices

@ Metaphor

® cvery project is guided by a single overarching metaphor
® vocabulary should be consistent with the metaphor

® give a coherent story within which to work, a story that can be easily shared by
business and technical

® a metaphor is a system architecture that is easy to communicate

Suradauisu

January 02, 2009 470

The 12 XP practices

@ Simple design
¢ The right design ins one that:

(1) runs all tests

(2) has no duplication

(3) states every intention

(4) has the fewer classes and methods

=
ra
-
=
o
o
-
—
=
el

January 02, 2009 471

The 12 XP practices

= @ Testing
® any feature without an automated test does not exist
programmers write unit tests

customers write functional tests

write test only for method that could possibly break

Suradauisu

January 02, 2009 472

The 12 XP practices

% @ Refactoring

® before changing the program: Is there a way of modifying the program to make
adding this new feature easier?

® after changing the program: Is there a way to make the program simpler?

® you refactor only when the systems requires you to

=
ra
-
=
o
o
-
—
=
el

January 02, 2009 473

The 12 XP practices

@ Pair programming
all production code is written with two people looking at one machine
* there are two roles in each pair:
® one partner is thinking about implementation
® the other is thinking strategically
~ is this whole approach going to work
- what test cases may fail
- can we simplify the system to make this problem go away
® pair programming is dynamic, different pairs each time
® pair programming spreads knowledge

Suradauisu

January 02, 2009 474

The 12 XP practices

@ Collective ownership

® anybody who sees an opportunity to add value to any portion of the code
is required to do so at any time

® chaos is adverted by testing

=
ra
-
=
o
o
-
—
=
el

January 02, 2009 475

The 12 XP practices

@ Continuous integration
® code is integrated and tested several times a day
* integration ends when 100% of tests are passed

Suradauisu

January 02, 2009 476

The 12 XP practices

@ 40 hour weeks
#® be fresh and rested

* overtime is a symptom of serious problems on the project

=
ra
-
=
o
o
-
—
=
el

January 02, 2009 477

The 12 XP practices

@ On site customer
#® real customers are need full time
® provide instant feedback

® keep development on track

Suradauisu

January 02, 2009 478

The 12 XP practices

@ Coding standards
the standard is indispensable
it should not be possible to tell who wrote a piece of code
® the standard must be accepted by the whole team

=
ra
-
=
o
[
-
—
=
el

January 02, 2009 479

The 12 XP practices

On-Site Customeér—
\27f w

s%

‘Planning Ggme

‘ek\

Simpl¢ design,

4/Syhor“r r‘eleq ses

/ding standards \

)

<

Continuous integration

Collective ownership

January 02, 2009 480

