Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 6:
Using Design Patterns

Lecture 6

www.lloseng.com

DESIGN PATTERNS

The Gang-of-Four: Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides
Design Patterns: Elements of Reusable Object Oriented Software (1995).

S
-
=
®
-
o
=
LE]
—
=
o
o
]
-
=
LE]

January 02, 2009 290

Background

@ Designing reusable software is difficult
finding good objects and abstractions
flexibility, modularity, elegance = reuse

* takes time for the to emerge, trial and error

@ Successful design do exist

exhibit recurring class and object structure

@ How to describe these recurring structures?

January 02, 2009 291

Alexander’'s Pattern Languages

@ What is it that gives a building its Quality ?
¢ freedom, life, comfort, harmony

@ Pattern: solution to a problem in a context
Entrance transition

Intimacy gradient
Light on two sides of every room

@ Linked patterns = Pattern Language
#2534 patterns, coarse to fine grain

The Timeless Way of Building (1979)
A Pattern Language (1977)

January 02, 2009 292

A Design Pattern

@ Describes a recurring design structure
® abstracts from concrete designs
identifies classes, collaborations, responsibilities

applicability, trade-offs, consequences

@ Examples
* Observer: MVC
Strategy: algorithms as objects

* Composite: recursive structures

January 02, 2009 293

Pattern description

Context:
* The general situation in which the pattern applies
Problem:
— A short sentence or two raising the main difficulty.
Forces:
* The issues or concerns to consider when solving the problem
Solution:
* The recommended way to solve the problem in the given context.
— ‘to balance the forces’
Antipatterns: (Optional)
* Solutions that are inferior or do not work in this context.
Related patterns: (Optional)
e Patterns that are similar to this pattern.
References:
* Who developed or inspired the pattern.

294

Patterns are not Designs

@ Must be instantiated
evaluate trade-offs and consequences
* make design and implementation decisions
implement, combine with other patterns

Suradauisu

January 02, 2009 295

Patterns are not Frameworks

@ Frameworks codify designs for solving a family of problems ina
specific domain

abstract, cooperating classes
@ Customized by

user defined subclasses
composition of objects

@ Contain instances of multiple patterns

=
rQ
-
=
o
o
-
-
=
S

January 02, 2009 296

Catalog of 23 Design Patterns

Creational Structural Behavioral
Abstract Factory Adapter Chain of Responsibility
Builder Bridge Command
Factory Method Composite Interpreter
Prototype Decorator Iterator
Singleton Facade Mediator
Flyweight Observer
= Proxy State
E Strategy
E Template Method
@ "Used twice" rule Visitor
patterns discovered not invented
January 02, 2009 297

Robustness to Change

@ Change is intrinsic to software
requirements, technology, platforms

alternative usage scenarios

@ Robustness to change determines
ease of evolution
subsequent maintenance costs
ultimate reusability

=
rQ
-
=
o
o
-
-
=
S

January 02, 2009 298

Robustness to Change

@ Each pattern addresses a particular variation
algorithms, implementations, instantiated classes
designs based on patterns robust to these variations

@ Consider variations during life-cycle
up-front analysis of variations
understand nature of change and “hot-spots”
identify and apply pattern

January 02, 2009 299

Design Confidence

@ General inexperience with objects
® is my design OK?
@ Patterns engender confidence
used-twice rule and blame the "Gang of Four"
still leaves room for creativity
@ Most people know the patterns
but partially, not with full understanding
liberating to know that others have similar designs
patterns improve with use

January 02, 2009 300

Common Problems

@ Taming over-enthusiasm

you "win" if you have the most patterns

solving the wrong problem

associated expense and cost

everything solved by the last pattern you learned
@ Structure instead of Intent

everything is a Strategy

patterns use similar constructs

Suradauisu

January 02, 2009 301

Finding the Right Pattern

@ Not always clear when pattern is applicable
hard to ask right questions during design

® requires expertise in both domain and patterns

@ Once pattern found, design falls in place
evaluate tradeoffs, and implement variation

=
rQ
-
=
o
o
-
-
=
S

January 02, 2009 302

A Common Desigh Vocabulary

@ Design language beyond technology
abstractions about problem not implementation

@ "Let's use an Observer here"
increased design velocity, culture

@ Shared vocabulary
within/across teams, up/down management
can exclude those not involved

Suradauisu

January 02, 2009 303

Creational Patterns

@ Abstract the creation of objects
inheritance allow variation in the instantiated class
encapsulate knowledge about concrete classes used
hide the creation process

@ Creational patterns let users configure which objects are used
configuration can exhibit various degrees of dynamism

=
rQ
-
=
o
o
-
-
=
S

January 02, 2009 304

Suradauisu

=
ra
-
=
o
o
-
—
=
el

@ A Maze composed of Rooms, Doors and Walls

Maze create() {
Maze maze =
Room rl =
Room r2 =

Door door =

new

new

new

new

Maze() ;
Room (1) ;
Room (2) ;

Door(rl,

maze.addRoom(rl) ;

maze.addRoom(r2) ;

Example

r2) ;

rl->setSide (North, new Wall()) ;
rl->setSide (East, door);
rl->setSide (South, new Wall()) ;

rl->setSide (West,

new Wall()) ;

r2->setSide (North, new Wall()) ;

r2->setSide (East,

new Wall()) ;

r2->setSide (South, new Wall()) ;
r2->setSide (West, door) ;

return maze;

}
January 02, 2009

Example

@ This design is inflexible

* why ?

January 02, 2009

305

306

Example

@ Creational patterns avoid hard coding the classes that get
instantiated.

Factory Method: use methods instead of constructors
® Abstract Factory: parameterize method with a creator object

Builder: parameterize method with an object that constructs a
complete maze

Prototype: parameterize method with prototypical objects for all
components of a maze

January 02, 2009 307

Factory Method

@ INTENT

® interface for creating an object, but choice of object's concrete
class delegated to subclass

@ MOTIVATION

frameworks often must instantiate classes but for each use of the
framework different concrete classes may need to be created

@ APPLICABILITY

a class can't anticipate the objects it must create

* a class wants its subclasses to specify the objects it creates
@ CONSEQUENCES

created class names not hard coded

may be used to connect parallel hierarchies

January 02, 2009 308

Factory Method

& IMPLEMENTATION
Varieties:

® Creator class is abstract and does not implement creation methods
(must be subclassed)

® Creator class is concrete and provides a default implementation
(can be subclassed)

Suradauisu

January 02, 2009 309

Factory Method: The Problem

=
]
-
=
®
®
-
-
=
]

January 02, 2009 310

Factory Method: The Problem

1. Frameworks use abstract classes to define and maintain
relationships between objects

January 02, 2009 310

Factory Method: The Problem

1. Frameworks use abstract classes to define and maintain
relationships between objects

2. Consider a framework for applications that present
multiple documents to the user. A drawing application is an
example.

January 02, 2009 310

Factory Method: The Problem

1. Frameworks use abstract classes to define and maintain
relationships between objects

2. Consider a framework for applications that present
multiple documents to the user. A drawing application is an

example. . o
3. This framework defines two abstract classes: application

and document. These ought to be sub classed by clients
for application specific implementation.

January 02, 2009 310

Factory Method: The Problem

1. Frameworks use abstract classes to define and maintain
relationships between objects

2. Consider a framework for applications that present
multiple documents to the user. A drawing application is an

example. . o
3. This framework defines two abstract classes: application

and document. These ought to be sub classed by clients
for application specific implementation.

4. The application class will create and manage documents
when required, e.g. when a New command is selected from
the menu.

January 02, 2009 310

Factory Method Pattern: The Problem

5. Document sub class is application specific. Hence the
Application class does not know what kind of document to
create!

January 02, 2009 311

Factory Method Pattern: The Problem

5. Document sub class is application specific. Hence the
Application class does not know what kind of document to
create!

6. Problem: The framework must instantiate classes but it only
knows about the abstract classes, which it cannot initiate!

January 02, 2009 311

Factory Method Pattern: Structure

January 02, 2009

312

Factory Method Pattern: Structure

Product

January 02, 2009

312

Factory Method Pattern: Structure

Product

ConcreteProduct

SuridouIsu

January 02, 2009 312

Factory Method Pattern: Structure

Product

ConcreteProduct

=
]
-
=
®
®
-
-
=
]

January 02, 2009 312

Factory Method Pattern: Structure

Product Creator
factoryMethod()
someOperation()
ConcreteProduct
January 02, 2009 312

Factory Method Pattern: Structure

Product Creator
SfactoryMethod()
someOperation()
ConcreteCreator
ConcreteProduct factoryMethod()

January 02, 2009 312

Factory Method Pattern: Structure

factoryMethod()
someOperation()

A

ConcreteCreator

factoryMethod()

ConcreteProduct

January 02, 2009 312

Factory Method Pattern: Structure

Product Creator

factoryMethod()
someOperation()

A

ConcreteCreator

factoryMethod()

ConcreteProduct .‘

January 02, 2009 312

Product

ConcreteProduct .‘

Factory Method Pattern: Structure

Creator

factoryMethod()
someOperation()

A

ConcreteCreator

factoryMethod()

January 02, 2009

return new ConcreteProduct

~

Product

/\

product=Factory method

ConcreteProduct .‘

312

Factory Method Pattern: Structure

Creator

factoryMethod()
someOperation()

A

ConcreteCreator

factoryMethod()

January 02, 2009

return new ConcreteProduct

~

312

Factory Method

@ IMPLEMENTATION

Parameterized factory methods. eg:
class Creator {
public Product create(ProductID id) {
if (id == MINE) return new MyProduct() ;
if (id == YOURS) return new YourProduct() ;
return null;

P}

can be extended to

; class MyCreator extends Creator {

E public Product create(ProductID id) {

= if (id == YOURS) return new MyProduct() ;

é if (id == THEIRS) return new YourProduct() ;

return super.create(id) ;

P}

January 02, 2009 313

Factory Method

@ IMPLEMENTATION
* Genericity. e.g.:

abstract class Creator {
public Product create() ;

class MyCreator<T> {

public Product create() { return new T();}

MyCreator<YourProduct> factory = new
MyCreator<YourProduct>() ;

=
ra
-
=
o
o
-
—
=
el

January 02, 2009 314

Factory Method

class Maze {

public Maze create() ;

public Maze makeMaze() { return new Maze(); }
public Maze makeRoom(int n) { return new Room(n); }
public Maze makeWall() { return new Wall (), }

public Maze makeDoor (Room rl, Room r2) {return new Door(rl,r2) ;}

Suradauisu

January 02, 2009 315

Factory Method

@ Sample Code
Maze create() {

Maze maze = makeMaze() ;
Room rl = makeRoom (1) ;
Room r2 = makeRoom (2) ;
Door door = makeDoor(rl, r2);
maze.addRoom(rl) ;
maze.addRoom(r2) ;
rl->setSide (North, makeWall()) ;
rl->setSide (East, door) ;
rl->setSide (South, makeWall()) ;
rl->setSide (West, makeWall()) ;
r2->setSide (North, makeWall()) ;
r2->setSide (East, makeWall()) ;
r2->setSide (South, makeWall()) ;
r2->setSide (West, door) ;

=
ra
-
=
o
o
-
—
=
el

return maze; }

January 02, 2009 316

Factory Method

class MazeBombsGame extends Maze {
public Maze makeRoom(int n) { return new RoomWithABomb (n); }
public Maze makeWall() { return new BombedWall() ;

Suradauisu

January 02, 2009 317

Abstract Factory

@ INTENT

® interface for creating families of related objects without revealing
their concrete classes

@ MOTIVATION

user interface toolkit that supports multiple look-and-feel standards
(e.g. Motif and Presentation Manager)

applications should be portable across window managers

=
rQ
-
=
o
o
-
-
=
S

January 02, 2009 318

Abstract Factory

Motifuidget Factory FMwidget Factory

Motifiyi ndow
+Create Seroll Bar() +CreateSerall Bar() PRNEImElETy _

+Craateyvindow) +Crazte'Windowd]

FMScroll Bar Motif Scroll Bar

Suradoursus

January 02, 2009 319

Abstract Factory

<& APPLICABILITY
a system should be independent of how its products are created,
composed and presented
a system should be configured with one of multiple families of
products
a family of products is designed to be used together, and you need to
enforce this constraint

=
ra
-
=
o
[
=
—
=
)

January 02, 2009 320

Abstract Factory

Concrete Factoryl ConcreteFactory?

Producta
Al +CreateFroducti{] ATEENEES -

+CreateProduct B +Create Product B[]

Suradoursus

Froduct B2 Froduct B

January 02, 2009 321

Abstract Factory

@ GONSEQUENCES
isolates concrete classes. clients only manipulate abstract interfaces
* it makes changing product families easy.

it promotes consistency among products. forbids arbitrary mix and
match across families

difficult to add new products, requires extending the interface of all
factory classes

=
ra
-
=
o
[
=
—
=
)

January 02, 2009 322

Suradauisu

=
rQ
-
=
o
o
-
-
=
S

Abstract Factory

@ IMPLEMENTATION

factories as singletons as only one instance of the class is needed
(usually)

creating the products:

® one factory method per kind of product
(override the factory method to specify the actual objects to create)

® when there can be a large number of families (i.e. requiring many
concrete factory classes) use the prototype pattern to have a single
concrete factory

January 02, 2009 323

Abstract Factory

class MazeFactory {
public Maze makeMaze() { return new Maze(); }
public Maze makeRoom(int n) { return new Room(n); }
public Maze makeWall() { return new Wall (), }

public Maze makeDoor (Room rl, Room r2) { return new Door(rl,
r2) ;}

January 02, 2009 324

Abstract Factory

Maze create(MazeFactory factory) {

Maze maze = factory.makeMaze() ;

Room rl factory.makeRoom (1) ;

Room r2 factory.makeRoom(2) ;

Door door factory.makeDoor(rl, r2);
maze.addRoom(rl) ;

maze.addRoom(r2) ;

rl->setSide (North, factory.makeWall()) ;
rl->setSide (East, door) ;

rl->setSide (South, factory.makeWall()) ;
rl->setSide (West, factory.makeWall()) ;
r2->setSide (North, factory.makeWall()) ;
r2->setSide (East, factory.makeWall()) ;
r2->setSide (South, factory.makeWall()) ;

r2->setSide (West, door) ;

Suradauisu

return maze; }

January 02, 2009

Abstract Factory

class EnchantedMazeFacotry extends MazeFactory {
public EnchantedMazeFactory () ;
Room makeRoom(int n) { return new EnchantedRoom(n); }
Door makeDoor (Room rl, Room r2) {

return new MagicDoor(rl,r2) ;

=
ra
-
=
o
o
-
—
=
el

January 02, 2009

Abstract Factory

class BombedMazeFacotry extends MazeFactory {
public BombedMazeFactory() ;
Room makeRoom(int n) { return new RoomWithABomb (n); }

Door makeWall () { return new BombedWall (rl,r2) ;}

can a RoomWithABomb use the special features of its walls?

Suradauisu

January 02, 2009 327

Observer Pattern

January 02, 2009 328

Observer Pattern

@ Separate presentational aspects from data.

Suradauisu

January 02, 2009 328

Observer Pattern

@ Separate presentational aspects from data.

=
ra
-
=
o
o
-
—
=
el

January 02, 2009 328

Observer Pattern

@ Separate presentational aspects from data.

= @ Classes defining data and presentation can be reused.

Suradauisu

January 02, 2009 328

Observer Pattern

@ Separate presentational aspects from data.

= @ Classes defining data and presentation can be reused.

Suradauisu

January 02, 2009 328

Observer Pattern

1 @ Separate presentational aspects from data.
@ Classes defining data and presentation can be reused.

@ Change in one view automatically reflected in other views.
Also, change in the application data is reflected in all views.

Suradauisu

January 02, 2009 328

Observer Pattern

1 @ Separate presentational aspects from data.
@ Classes defining data and presentation can be reused.

@ Change in one view automatically reflected in other views.
Also, change in the application data is reflected in all views.

Suradauisu

January 02, 2009 328

Observer Pattern

@ Separate presentational aspects from data.
@ Classes defining data and presentation can be reused.

@ Change in one view automatically reflected in other views.
Also, change in the application data is reflected in all views.

@ Defines one-to-many dependency amongst objects so that
when one object changes its state, all its dependents are
notified.

Suradauisu

January 02, 2009 328

Observer Pattern

— Change notification
-~ Requests, modifications

January 02, 2009 329

Observer Pattern

—Application data

SuridouIsu

— Change notification
-~ Requests, modifications

January 02, 2009 329

Observer Pattern

A B CD
X 15 35 3515
10 40 3020
Z 10 40 3020

—Application data

=
]
-
=
®
®
-
-
=
]

— Change notification
-~ Requests, modifications

January 02, 2009 329

Observer Pattern

Relative Percentages
A B CD
X 15 35 3515
10 40 3020
Z 10 40 3020
A B C D
A=10%
B=40% —Application data
—— Change notification C=30%
—"0
RCQUCSTS, modifications 2
January 02, 2009 329

Observer Pattern

Relative Percentages
A B CD
X 15 35 3515
10 40 3020
Z 10 40 3020
A B C D
A=10%
B=40% —Application data
—— Change notification C=30%
=209

-~ Requests, modifications

January 02, 2009 329

Observer Pattern

observers
Subject o Observer
attach (Observer) uUpdate()
tach
de éc (Observer) forall x in observers B
notify () © x.update();
Z& Concrete Observer
Concrete SubjectL subject | ypdate()
getState() observerState
setState() observerState = N
subjectState subject.getState(); '
January 02, 2009 330
Class collaboration in Observer
:ConcreteSubject :ConcreteObserver-1 :ConcreteObserver-2
setState()
notify()
— 1
update()
getState()
update()
getState()

January 02, 2009 331

Observer code

SuridouIsu

January 02, 2009 332

Observer code

import Subject;

=
]
-
=
(¢
®
-
-
=
]

January 02, 2009 332

Observer code

import Subject;

SuridouIsu

January 02, 2009 332

Observer code

import Subject;

=
]
-
=
(¢
®
-
-
=
]

January 02, 2009 332

Observer code

import Subject;

SuridouIsu

January 02, 2009 332

Observer code

import Subject;

class Observer {

=
]
-
=
(¢
®
-
-
=
]

January 02, 2009 332

Observer code

import Subject;

class Observer {

SuridouIsu

January 02, 2009 332

Observer code

import Subject;

class Observer {

=
]
-
=
(¢
®
-
-
=
]

January 02, 2009 332

Observer code

import Subject;

class Observer {

SuridouIsu

January 02, 2009 332

Observer code

import Subject;

class Observer {

public abstract void update (Subject theChangeSubject) ;

=
]
-
=
(¢
®
-
-
=
]

January 02, 2009 332

Observer code

import Subject;

class Observer {

public abstract void update (Subject theChangeSubject) ;

protected Observer() ;

January 02, 2009 332

Observer code

import Subject;

—

class Observer { Abstract class defining
the Observer interface.

public abstract void update (Subject theChangeSubject) ;

protected Observer() ;

January 02, 2009 332

Observer code

import Subject;

—

class Observer {

Abstract class defining
the Observer interface.

public abstract void

protected Observer() ;

January 02, 2009

update (Subject theChangeSubject) ;

Note the support for multiple subjects.

332

Subject Code

January 02, 2009

333

Subject Code

abstract class Subject {

SuridouIsu

January 02, 2009 333

Subject Code

abstract class Subject {

public abstract void attach (Observer o) ;

=
]
-
=
(¢
®
-
-
=
]

January 02, 2009 333

Subject Code

abstract class Subject {

public abstract void attach (Observer o) ;
public abstract void detach (Observer o) ;

SuridouIsu

January 02, 2009 333

Subject Code

abstract class Subject {

public abstract void attach (Observer o) ;
public abstract void detach (Observer o) ;
public abstract void notify (Observer o) ;

=
]
-
=
®
®
-
-
=
]

January 02, 2009 333

Subject Code

abstract class Subject {

public abstract void attach (Observer o) ;
public abstract void detach (Observer o) ;
public abstract void notify (Observer o) ;

protected Subject();

January 02, 2009 333

Subject Code

abstract class Subject {

public abstract void attach (Observer o) ;
public abstract void detach (Observer o) ;
public abstract void notify (Observer o) ;

protected Subject();

private List observers ;

January 02, 2009 333

Subject Code

abstract class Subject {

public abstract void attach (Observer o) ;
public abstract void detach (Observer o) ;
public abstract void notify (Observer o) ;

protected Subject();

private List observers ;

Could this be an interface?

SuridouIsu

January 02, 2009 333

Subject Code

abstract class Subject { | Abstract class defining
the Subject interface.

public abstract void attach (Observer o) ;
public abstract void detach (Observer o) ;
public abstract void notify (Observer o) ;

protected Subject();

private List observers ;

Could this be an interface?

=
]
-
=
®
®
-
-
=
]

January 02, 2009 333

When to use the Observer Pattern?

SuridouIsu Q1B M)I]O

January 02, 2009 334

When to use the Observer Pattern?

@ When an abstraction has two aspects: one dependent on the
other. Encapsulating these aspects in separate objects allows
one to vary and reuse them independently.

-

.
4]
o
-
-
-
—
[
=
-
o

()
-
=
EY
-
(]
=
rQ
-
=
o
o
-
-
=
S

January 02, 2009 334

When to use the Observer Pattern?

@ When an abstraction has two aspects: one dependent on the
other. Encapsulating these aspects in separate objects allows
one to vary and reuse them independently.

Suradauisu

January 02, 2009 334

When to use the Observer Pattern?

@ When an abstraction has two aspects: one dependent on the
other. Encapsulating these aspects in separate objects allows
one to vary and reuse them independently.

@ When a change to one object requires changing others and the
number of objects to be changed is not known.

=
rQ
-
=
o
o
-
-
=
S

January 02, 2009 334

When to use the Observer Pattern?

@ When an abstraction has two aspects: one dependent on the
other. Encapsulating these aspects in separate objects allows
one to vary and reuse them independently.

@ When a change to one object requires changing others and the
number of objects to be changed is not known.

January 02, 2009 334

When to use the Observer Pattern?

@ When an abstraction has two aspects: one dependent on the
other. Encapsulating these aspects in separate objects allows
one to vary and reuse them independently.

@ When a change to one object requires changing others and the
number of objects to be changed is not known.

@ When an object should be able to notify others without knowing
who they are. Avoid tight coupling between objects.

January 02, 2009 334

Observer Pattern: Consequences

SuridouIsu Q1B M)I]O

January 02, 2009 335

Observer Pattern: Consequences

@ Abstract coupling between subject and observer. Subject has
no knowledge of concrete observer classes. (What design
principle is used?)

-

.
4]
o
-
-
-
—
[
=
ey
o

=]
-
=
-
=
o
=
ve
—
=
o
(]
~
=
=
va

January 02, 2009 335

Observer Pattern: Consequences

@ Abstract coupling between subject and observer. Subject has
no knowledge of concrete observer classes. (What design
principle is used?)

Suradauisu

January 02, 2009 335

Observer Pattern: Consequences

@ Abstract coupling between subject and observer. Subject has
no knowledge of concrete observer classes. (What design
principle is used?)

@ Support for broadcast communication. A subject need not
specify the receivers; all interested objects receive the
notification.

=
rQ
-
=
o
o
-
-
=
S

January 02, 2009 335

Observer Pattern: Consequences

@ Abstract coupling between subject and observer. Subject has
no knowledge of concrete observer classes. (What design
principle is used?)

@ Support for broadcast communication. A subject need not
specify the receivers; all interested objects receive the
notification.

January 02, 2009 335

Observer Pattern: Consequences

@ Abstract coupling between subject and observer. Subject has
no knowledge of concrete observer classes. (What design
principle is used?)

@ Support for broadcast communication. A subject need not
specify the receivers; all interested objects receive the
notification.

@ Unexpected updates: Observers need not be concerned about
when then updates are to occur. They are not concerned about
each other's presence. In some cases this may lead to unwanted
updates.

January 02, 2009 335

Facade Pattern: Problem

January 02, 2009 336

Facade Pattern: Problem

_ Client Classes
L]]

January 02, 2009 336

Facade Pattern: Problem

_ Client Classes
L]]

B]
- - Subsystem classes

SuridouIsu Q1B M)I]O

January 02, 2009 336

Facade Pattern: Problem

Client Classes

— =]
- - Subsystem classes

S
-
=
=
-
o
=
LE]
[
=
o
o
]
-
=
LE]

January 02, 2009 336

Facade Pattern: Problem

_ Client Classes
L]]

Need to communicate
with

— =]
- - Subsystem classes

SuridouIsu Q1B M)I]O

January 02, 2009 336

Facade Pattern: Problem

Client Classes
Need to communicate
with

/

Subsystem classes

S
-
=
=
-
o
=
LE]
[
=
o
o
]
-
=
LE]

January 02, 2009 336

Fagade Pattern: Why and What?

ient Classes

N Subsystem classes

@ Fagade provides a simple default view good enough for most
clients.

@ Facade decouples a subsystem from its clients.

Suradauisu

@ A fagade can be a single entry point to each subsystem level.
This allows layering.

January 02, 2009 337

Fagade Pattern: Why and What?

@ Subsystems often get

ient Classes
complex as they evolve.

N Subsystem classes

@ Fagade provides a simple default view good enough for most
clients.

=
rQ
—
=
o
o
-
-
=
S

@ Facade decouples a subsystem from its clients.

@ A fagade can be a single entry point to each subsystem level.
This allows layering.

January 02, 2009 337

Fagade Pattern: Why and What?

@ Subsystems often get
complex as they evolve.

@ Need to provide a
simple interface to
many, often small,

[] classes. But not
necessarily to ALL

Subsystem classes classes of the
subsystem.

ient Classes

@ Fagade provides a simple default view good enough for most
clients.

@ Facade decouples a subsystem from its clients.

Suradauisu

@ A fagade can be a single entry point to each subsystem level.
This allows layering.

January 02, 2009 337

Participants & Communication

January 02, 2009 338

-

.
4]
o
-
-
-
—
[
=
-
o

Suradauisu

=
ra
-
=
o
[
-
—
=
el

Participants & Communication

@ Participants: Fagade and subsystem classes

January 02, 2009

338

Participants & Communication

@ Participants: Fagade and subsystem classes

@ Clients communicate with subsystem classes by sending

requests to fagade.

January 02, 2009

338

Participants & Communication

@ Participants: Fagade and subsystem classes

@ Clients communicate with subsystem classes by sending
requests to fagade.

@ Fagade forwards requests to the appropriate subsystem
classes.

January 02, 2009 338

Participants & Communication

@ Participants: Fagade and subsystem classes

@ Clients communicate with subsystem classes by sending
requests to fagade.

@ Fagade forwards requests to the appropriate subsystem
classes.

@ Clients do not have direct access to subsystem classes.

January 02, 2009 338

Benefits

SuridouIsu

January 02, 2009 339

Benefits

@ Shields clients from subsystem classes; reduces the number of
objects that clients deal with.

=
ra
-
=
o
[
-
—
=
el

January 02, 2009 339

Benefits

@ Shields clients from subsystem classes; reduces the number of
objects that clients deal with.

@ Promotes weak coupling between subsystem and its clients.

January 02, 2009 339

Benefits

@ Shields clients from subsystem classes; reduces the number of
objects that clients deal with.

@ Promotes weak coupling between subsystem and its clients.

@ Helps in layering the system. Helps eliminate circular
dependencies.

January 02, 2009 339

Example: A compiler

SuridouIsu Q1B M)I]O

January 02, 2009 340

Example: A compiler

Stream

+

BytecodeStream

I

CodeGenerator

°
-
=
0
-
®
=
]
-
=
®
®
-
-
=
]

January 02, 2009 340

Example: A compiler

Stream

+

BytecodeStream

I

CodeGenerator

=

ISCCodegenerator StackMachineCodegenerator

January 02, 2009 340

Example: A compiler

Stream

+

BytecodeStream

I

CodeGenerator

A

=

ISCCodegenerator StackMachineCodegenerator

January 02, 2009 340

Example: A compiler

Stream
+ Scanner [Token

BytecodeStream

I

CodeGenerator

A

=

ISCCodegenerator StackMachineCodegenerator

January 02, 2009 340

Example: A compiler

Stream
+ Scanner [Token
BytecodeStream
i Parser Symbol
CodeGenerator

A

=

ISCCodegenerator StackMachineCodegenerator

January 02, 2009 340

Stream

+

BytecodeStream

I

CodeGenerator

Example: A compiler

Scanner [Token
Parser Symbol
PnodeBuilder |........., Pnode

A

=RISCCodegenerator

StackMachineCodegenerator

January 02, 2009 340
Example: A compiler
Stream
4L Scanner | Token | |
BytecodeStream
i Parser Symbol
CodeGenerator
PnodeBuilder |........., Pnode
=RISCCodegenerator StackMachineCodegenerator
January 02, 2009 340

Example: A compiler

Stream
+ Scanner [Token |~ |
BytecodeStream
i Parser Symbol
CodeGenerator
PnodeBuilder |........., Pnode
StatementNode

=RISCCodegenerator

StackMachineCodegenerator

January 02, 2009

340

Example: A compiler

Stream

+ Scanner [Token |~ |
BytecodeStream

i Parser Symbol
CodeGenerator

PnodeBuilder |........., Pnode
i 2 |
StatementNode

=RISCCodegenerator

StackMachineCodegenerator

January 02, 2009

340

Example: A compiler

Stream

+ Scanner [Token |~ |
BytecodeStream

i Parser Symbol
CodeGenerator

PnodeBuilder |........., Pnode
i 2 |
StatementNode ExpressionNode

=RISCCodegenerator

StackMachineCodegenerator

January 02, 2009

340

Example: A compiler

Stream

+ Scanner [Token |~ |
BytecodeStream

i Parser Symbol
CodeGenerator

PnodeBuilder |........., Pnode
i 2 |
StatementNode ExpressionNode

=RISCCodegenerator

StackMachineCodegenerator

January 02, 2009

340

Example: A compiler

Stream
4L Scanner | Token | |
BytecodeStream
i Parser Symbol
CodeGenerator |-
PnodeBuilder |........., Pnode
i 3 |
StatementNode ExpressionNode
=RISCCodegenerator StackMachineCodegenerator
January 02, 2009 340
Example: A compiler
Stream
+ HI— Scanner I Token]
BytecodeStream
i Parser Symbol
CodeGenerator |-
PnodeBuilder |........., Pnode
i 3 |
StatementNode ExpressionNode
=RISCCodegenerator StackMachineCodegenerator

January 02, 2009 340

Example: A compiler

Stream 2
BytecodeStream
i Parser Symbol
CodeGenerator |-
PnodeBuilder |........., Pnode
i 3 |
StatementNode ExpressionNode
=RISCCodegenerator StackMachineCodegenerator
January 02, 2009 340
Example: A compiler
Stream
BytecodeStream
i Parser Symbol
CodeGenerator |-
PnodeBuilder |........., Pnode
i 3 |
StatementNode ExpressionNode
=RISCCodegenerator StackMachineCodegenerator

January 02, 2009 340

=
]
-
=
®
®
-
-
=
]

Example: A compiler

Stream
BytecodeStream
i Parser Symbol
CodeGenerator |«
PnodeBuilder |........., Pnode
) 4 |
StatementNode ExpressionNode

ISCCodegenerator

StackMachineCodegenerator

January 02, 2009

340

Facade Pattern: Code

January 02, 2009

341

Facade Pattern: Code

class Scanner {

January 02, 2009 341

Facade Pattern: Code

class Scanner {

private Stream input_;

January 02, 2009 341

Facade Pattern: Code

class Scanner {

private Stream input_;

public Scanner (Stream) ;

SuridouIsu

January 02, 2009 341

Facade Pattern: Code

class Scanner {

private Stream input_;

public Scanner (Stream) ;
public Token scan();

=
LE]
[
=
o
o
L]
—
=
LE]

January 02, 2009 341

Facade Pattern: Code

class Scanner {
/] Takes a stream of characters and produces a stream of tokens.

private Stream input_;

public Scanner (Stream) ;
public Token scan();

SuridouIsu

January 02, 2009 341

Facade Pattern: Code

class Parser {

public Parser();
public void parse (Scanner, PNodeBuilder) ;

=
LE]
[
=
o
o
L]
—
=
LE]

January 02, 2009 342

Facade Pattern: Code

class Parser {
/[Builds a parse tree from tokens using the PNodeBuilder.

public Parser();
public void parse (Scanner, PNodeBuilder) ;

SuridouIsu

January 02, 2009 342

Facade Pattern: Code

=
]
-
=
®
®
-
-
=
]

January 02, 2009 343

Facade Pattern: Code

class PNodeBuilder ({

SuridouIsu

January 02, 2009 343

Facade Pattern: Code

class PNodeBuilder ({

public PNodeBuilder() ;

=
]
-
=
®
®
-
-
=
]

January 02, 2009 343

Facade Pattern: Code

class PNodeBuilder ({

public PNodeBuilder() ;

Pnode makeVariable (String name) ;

SuridouIsu

January 02, 2009 343

Facade Pattern: Code

class PNodeBuilder ({

public PNodeBuilder() ;

Pnode makeVariable (String name) ;

Pnode makeAssignment (Pnode variable, Pnode exp) ;

=
LE]
[
=
o
o
L]
—
=
LE]

January 02, 2009 343

Facade Pattern: Code

class PNodeBuilder ({

public PNodeBuilder() ;

Pnode makeVariable (String name) ;

Pnode makeAssignment (Pnode variable, Pnode exp) ;

private PNode node ;

SuridouIsu

January 02, 2009 343

Facade Pattern: Code

class PNodeBuilder ({

/I Builds a parse tree incrementally. Parse tree

/I consists of Pnode objects.
public PNodeBuilder () ;

Pnode makeVariable (String name) ;

Pnode makeAssignment (Pnode variable, Pnode exp) ;

private PNode node ;

=
LE]
[
=
o
o
L]
—
=
LE]

January 02, 2009 343

Facade Pattern: Code

class PNodeBuilder ({

/I Builds a parse tree incrementally. Parse tree

/I consists of Pnode objects.
public PNodeBuilder () ;

Pnode makeVariable (String name) ;

// Node for a variable.

Pnode makeAssignment (Pnode variable, Pnode exp) ;

private PNode node ;

SuridouIsu

January 02, 2009 343

Facade Pattern: Code

class PNodeBuilder ({

/I Builds a parse tree incrementally. Parse tree

/I consists of Pnode objects.
public PNodeBuilder () ;

Pnode makeVariable (String name) ;

// Node for a variable.

Pnode makeAssignment (Pnode variable, Pnode exp) ;

// Node for an assignment.

private PNode node ;

=
]
-
=
®
®
-
-
=
]

January 02, 2009 343

Facade Pattern: Code

class PNodeBuilder ({

/I Builds a parse tree incrementally. Parse tree

/I consists of Pnode objects.
public PNodeBuilder () ;

Pnode makeVariable (String name) ;

// Node for a variable.

Pnode makeAssignment (Pnode variable, Pnode exp) ;

// Node for an assignment.

private PNode node ;

SuridouIsu

/[Similarly...more nodes.

January 02, 2009 343

Facade Pattern: Code

abstract class PNode {

protected PNode() ;

public int getSourceline () ;
public int getSourceIndex() ;

public void add(Pnode) ;
public void remove (Pnode) ;

public traverse (CodeGen) ;

=
]
-
=
®
®
-
-
=
]

private PNode node_;

January 02, 2009 344

SuridouIsu

=
LE]
[
=
o
o
L]
—
=
LE]

public
public

public

public

public

January 02, 2009

Facade Pattern: Code

abstract class Plff/gﬁ il%terface to manipulate the program node and its children.

protected PNode() ;

int getSourceline() ;
int getSourcelndex() ;

void add(Pnode) ;
void remove (Pnode) ;

traverse (CodeGen) ;

private PNode node_;

344

Facade Pattern: Code

abstract class Plff/gﬁ il%terface to manipulate the program node and its children.

protected PNode() ;

/I Manipulate program node.

public
public

public
public

public

int getSourceline() ;
int getSourcelndex() ;

void add(Pnode) ;
void remove (Pnode) ;

traverse (CodeGen) ;

private PNode node_;

January 02, 2009

344

SuridouIsu

=
]
-
=
®
®
-
-
=
]

Facade Pattern: Code

apstract class Plff/gﬁ il%terface to manipulate the program node and its children.
protected PNode() ;
/I Manipulate program node.

public int getSourceline() ;
public int getSourceIndex() ;

/I Manipulate child node.
public void add(Pnode) ;

public void remove (Pnode) ;

...

public traverse (CodeGen) ;

private PNode node_;

January 02, 2009 344

Facade Pattern: Code

abstract class Plff/gﬁ il%terface to manipulate the program node and its children.
protected PNode() ;
/I Manipulate program node.

public int getSourceline () ;
public int getSourceIndex() ;

/I Manipulate child node.
public void add(Pnode) ;

public void remove (Pnode) ;

...

public traverse(CodeGen); // Traverse tree to generate code.

private PNode node_;

January 02, 2009 344

Facade Pattern: Code

Abstract class CodeGen {

public wvoid
visit(StatementNode n) ;

public wvoid
visit(StatementNode n) ;

private ByteCodeStream
output_;

SuridouIsu

January 02, 2009 345

Facade Pattern: Code

Abstract class CodeGen {

public void /I Generate bytecode.
visit(StatementNode n) ;

public wvoid
visit(StatementNode n) ;

private ByteCodeStream
output_;

=
LE]
[
=
o
o
L]
—
=
LE]

January 02, 2009 345

Facade Pattern: Code

Abstract class CodeGen {

public void /I Generate bytecode.
visit(StatementNode n) ;

public wvoid
visit(StatementNode n) ;
/I Manipulate program node.

private ByteCodeStream
output_;

...

SuridouIsu

January 02, 2009 345

Facade Pattern: Code

class ExpressionNode ({
public void traverse (CodeGen g) {
cg.visit (this);
ListIterator it = children.iterator():;
while (it.hasNext())
((PNode)it.next()) .traverse(q) ;

=
]
-
=
®
®
-
-
=
]

January 02, 2009 346

Facade Pattern: Code

class Compiler ({
public Compiler() ;
public void compile (Stream input, ByteCodeStream output) ({

Scanner scanner = new Scanner (input) ;
PNodeBuilder builder = new PNodeBuilder() ;
parser.Parse (scanner, builder) ;

RISCCodeGen genrator = new RISCCodeGen (output) ;
Pnode parseTree = builder.getRootNode() ;
parseTree. traverse (generator) ;

SuridouIsu

January 02, 2009 347

Facade Pattern: Code

class Compiler { Il Fagade. Offers a simple interface to compile and
Il Generate code.

public Compiler();
public void compile (Stream input, ByteCodeStream output) ({

Scanner scanner = new Scanner (input) ;
PNodeBuilder builder = new PNodeBuilder () ;
parser.Parse (scanner, builder) ;

RISCCodeGen genrator = new RISCCodeGen (output) ;
Pnode parseTree = builder.getRootNode() ;
parseTree. traverse (generator) ;

=
]
-
=
®
®
-
-
=
]

January 02, 2009 347

Facade Pattern: Code

class Compiler { Il Fagade. Offers a simple interface to compile and
Il Generate code.

Could also take a CodeGenerator

public Compiler()i__________________) ’
Parameter for increased generality.

public void compile (Stream input, ByteCodeStream output) ({

Scanner scanner = new Scanner (input) ;
PNodeBuilder builder = new PNodeBuilder() ;
parser.Parse (scanner, builder) ;

RISCCodeGen genrator = new RISCCodeGen (output) ;
Pnode parseTree = builder.getRootNode() ;
parseTree. traverse (generator) ;

SuridouIsu

January 02, 2009 347

Singleton

=
]
-
=
®
®
-
-
=
]

January 02, 2009 348

Singleton

@ Used to ensure that a class has only one instance. For example,
one printer spooler object, one file system, one window manager,
etc.

January 02, 2009 348

Singleton

@ Used to ensure that a class has only one instance. For example,
one printer spooler object, one file system, one window manager,
etc.

@ One may use a global variable to access an object but it does not
prevent one from creating more than one instance.

January 02, 2009 348

Singleton

@ Used to ensure that a class has only one instance. For example,
one printer spooler object, one file system, one window manager,
etc.

@ One may use a global variable to access an object but it does not
prevent one from creating more than one instance.

@ Instead the class itself is made responsible for keeping track of
its instance. It can thus ensure that no more than one instance is
created. This is the singleton pattern.

January 02, 2009 348

Singleton Structure

Singleton

static uniquelnstance return uniqueinstance N

singletonData

static instance()
singletonOp()
getSingletonData()

January 02, 2009 349

Singleton Code

public class Singleton {
private static Singleton instance_ ;
private Data data_;
private Singleton() { ..init data.. }
public Data getData() { return data_ ; }

public synchronized static Singleton instance() {

if (instance_ == null) instance_ = new
Singleton() ;

return instance_;

SuridouIsu

January 02, 2009 350

Singleton Code

public class Singleton {
private static Singleton instance ;
private Data data ; //Onlyone instance can ever be created.
private Singleton() { ..init data.. }
public Data getData() { return data_ ; }

public synchronized static Singleton instance() {

if (instance_ == null) instance_ = new
Singleton() ;

return instance_;

=
]
-
=
®
®
-
-
=
]

January 02, 2009 350

6.7 The Delegation Pattern

* Context:
—You are designing a method in a class

— You realize that another class has a method which
provides the required service
— Inheritance is not appropriate
- E.g. because the isa rule does not apply
e Problem:

—How can you most effectively make use of a method that
already exists in the other class?

e Forces:
— You want to minimize development cost by reusing
methods
351
Delegation
e Solution:
D 1 Qct > U(

Selegatinghletiod) «Delegaton 1 «Delegate»

N S -delegatingMethod thod

L delegate method(); - - 0 method)

)

Stack LinkedList

push() C-l 1

' e L push() addFirst()
list.addFirst(); pop() addLast()

} 1sEmpty() addAfter()
removeFirst()
removeLast()
delete()
1sEmpty()

352

Delegation

Example:
Booking 1l SpecificFlight 1| RegularFlight
tlightNumber() flightNumber() thghtNumber()
flightNumber() flightNumber()
{ [
refurn " retum
] specificFlight flightNumber(); regularFlight flightNumber();
)
353
Delegation
Antipatterns

» Overuse generalization and inherit the method that is to be
reused

* Instead of creating a single method in the «Delegator» that
does nothing other than call a method in the «Delegate

—consider having many different methods in the
«Delegator» call the delegate’s method

» Access non-neighboring classes

return specificFlight.regularFlight.flightNumber();

return getRegularFlight().flightNumber();

354

6.8 The Adapter Pattern

e Context:

—You are building an inheritance hierarchy and want to incorporate it

into an existing class.

—The reused class is also often already part of its own inheritance

hierarchy.
e Problem:

—How to obtain the power of polymorphism when reusing a class

whose methods

- have the same function

- but not the same signature

as the other methods in the hierarchy?

e Forces:

—You do not have access to multiple inheritance or you do not want to

use it.

Adapter

e Solution:

355

«Superclass»

polymorphicMethod()

/\

polymorphicMethod()
f

L

——

return
adaptee.adaptedMethod():

«Adapter»

-

«Adaptee»

adaptedMethod

356

Adapter

Example:
volume()
Shape3D (
ol return

volume() adaptee.calcVolume();

Al

I |
Sphere Torus [1| TmsTorus

calcVolume()

357

6.10 The Immutable Pattern

* Context:
— An immutable object is an object that has a state that never changes
after creation

* Problem:
—How do you create a class whose instances are immutable?
* Forces:

—There must be no loopholes that would allow ‘illegal’ modification of
an immutable object

e Solution:

—Ensure that the constructor of the immutable class is the only place
where the values of instance variables are set or modified.

—Instance methods which access properties must not have side effects.

—If a method that would otherwise modify an instance variable is
required, then it has to return a new instance of the class.

358

6.11 The Read-only Interface Pattern

e Context:

—You sometimes want certain privileged classes to be able to modify
attributes of objects that are otherwise immutable

e Problem:

—How do you create a situation where some classes see a class as read-
only whereas others are able to make modifications?

e Forces:

—Restricting access by using the public, protected and private
keywords is not adequately selective.

—Making access public makes it public for both reading and writing

359

Read-only Interface

e Solution:

«interface»
«ReadOnlylInterface» (< =1 «UnprivilegedClass»

getAttribute()

/\

«Mutabley

attribute «private» == ~ «Mutator»

getAttribute()
setAttribute()

360

Read-only Interface

Example: «interfacey

Person

getName()

/\

Mutableperson

firstName
lastName

setFirstName()
setLastName()
getName()

361

Read-only Interface

Antipatterns:

* Make the read-only class a subclass of the «Mutable» class
* Override all methods that modify properties

—such that they throw an exception

362

6.12 The Proxy Pattern

e Context:

—Often, it is time-consuming and complicated to create instances of a
class (heavyweight classes).

—There is a time delay and a complex mechanism involved in creating
the object in memory

* Problem:
—How to reduce the need to create instances of a heavyweight class?
* Forces:

— We want all the objects in a domain model to be available for
programs to use when they execute a system’s various responsibilities.

— It is also important for many objects to persist from run to run of the
same program

363

Proxy

e Solution:

«interfacey
«ClassIF»

- i ® 0.1 0.1
«Client» «Proxy»

«HeavyWeight»

364

Proxy

Examples:

«interface» The list elements will
List loaded into local memory
f f only when needed.

ListProxy 0191} PersistentList
«interface»
Student
l !
, . 0.1 0. .
StudentProxy PersistentStudent

365

