
Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 5:

Modelling with Classes

Lecture 5

226

5.1 What is UML?

The Unified Modelling Language is a standard graphical language for

modelling object oriented software

• At the end of the 1980s and the beginning of 1990s, the first object-

oriented development processes appeared

• The proliferation of methods and notations tended to cause considerable

confusion

• Two important methodologists Rumbaugh and Booch decided to merge

their approaches in 1994.

—They worked together at the Rational Software Corporation

• In 1995, another methodologist, Jacobson, joined the team

—His work focused on use cases

• In 1997 the Object Management Group (OMG) started the process of

UML standardization

227

UML diagrams

• Class diagrams

—describe classes and their relationships

• Interaction diagrams

—show the behaviour of systems in terms of how objects

interact with each other

• State diagrams and activity diagrams

—show how systems behave internally

• Component and deployment diagrams

—show how the various components of systems are

arranged logically and physically

228

UML features

• It has detailed semantics

• It has extension mechanisms

• It has an associated textual language

—Object Constraint Language (OCL)

The objective of UML is to assist in software development

—It is not a methodology

229

What constitutes a good model?

A model should

• use a standard notation

• be understandable by clients and users

• lead software engineers to have insights about the system

• provide abstraction

Models are used:

• to help create designs

• to permit analysis and review of those designs.

• as the core documentation describing the system.

230

5.2 Essentials of UML Class Diagrams

The main symbols shown on class diagrams are:

• Classes

- represent the types of data themselves

• Associations

- represent linkages between instances of classes

• Attributes

- are simple data found in classes and their instances

• Operations

- represent the functions performed by the classes and their

instances

• Generalizations

- group classes into inheritance hierarchies

231

Classes

A class is simply represented as a box with the name of the class

inside

• The diagram may also show the attributes and operations

• The complete signature of an operation is:

operationName(parameterName: parameterType …): returnType

232

5.3 Associations and Multiplicity

An association is used to show how two classes are related to each

other

• Symbols indicating multiplicity are shown at each end of the

association

233

Labelling associations

• Each association can be labelled, to make explicit the nature of the

association

234

Analyzing and validating associations

• Many-to-one

—A company has many employees,

—An employee can only work for one company.

- This company will not store data about the moonlighting activities

of employees!

—A company can have zero employees

- E.g. a ‘shell’ company

—It is not possible to be an employee unless you work for a

company

*
worksFor

Employee Company1

235

Analyzing and validating associations

• Many-to-many

—An assistant can work for many managers

—A manager can have many assistants

—Assistants can work in pools

—Managers can have a group of assistants

—Some managers might have zero assistants.

—Is it possible for an assistant to have, perhaps temporarily,

zero managers?

*

supervisor

*****1..*Assistant Manager

236

Analyzing and validating associations

• One-to-one

—For each company, there is exactly one board of directors

—A board is the board of only one company

—A company must always have a board

—A board must always be of some company

11

237

Analyzing and validating associations

Avoid unnecessary one-to-one associations

! Avoid this do this

238

A more complex example

• A booking is always for exactly one passenger

—no booking with zero passengers

—a booking could never involve more than one passenger.

• A Passenger can have any number of Bookings

—a passenger could have no bookings at all

—a passenger could have more than one booking

• The frame around this diagram is an optional feature that any

UML 2.0 may possess.

239

Association classes

• Sometimes, an attribute that concerns two associated classes cannot

be placed in either of the classes

• The following are equivalent

240

Reflexive associations

• It is possible for an association to connect a class to itself

241

Directionality in associations

• Associations are by default bi-directional

• It is possible to limit the direction of an association by adding

an arrow at one end

242

5.4 Generalization

Specializing a superclass into two or more subclasses

• A generalization set is a labeled group of generalizations with a

common superclass

• The label (sometimes called the discriminator) describes the

criteria used in the specialization

243

Avoiding unnecessary generalizations

Inappropriate hierarchy of

classes, which should be

instances

244

Avoiding unnecessary generalizations (cont)

Improved class diagram, with its corresponding instance

diagram

245

Handling multiple discriminators

• Creating higher-level generalization

246

Handling multiple discriminators

• Using multiple inheritance

• Using the Player-Role pattern (in Chapter 6)

247

Avoiding having instances change class

• An instance should never need to change class

248

5.5 Object Diagrams

• A link is an instance of an association

—In the same way that we say an object is an instance of a class

249

Associations versus generalizations in
object diagrams

• Associations describe the relationships that will exist between

instances at run time.

—When you show an instance diagram generated from a

class diagram, there will be an instance of both classes

joined by an association

• Generalizations describe relationships between classes in

class diagrams.

—They do not appear in instance diagrams at all.

—An instance of any class should also be considered to be

an instance of each of that class’s superclasses

250

5.6 More Advanced Features: Aggregation

• Aggregations are special associations that represent ‘part-whole’

relationships.

—The ‘whole’ side is often called the assembly or the aggregate

—This symbol is a shorthand notation association named

isPartOf

251

When to use an aggregation

As a general rule, you can mark an association as an

aggregation if the following are true:

• You can state that

—the parts ‘are part of’ the aggregate

—or the aggregate ‘is composed of’ the parts

• When something owns or controls the aggregate, then they

also own or control the parts

252

Composition

• A composition is a strong kind of aggregation

—if the aggregate is destroyed, then the parts are destroyed as

well

• Two alternatives for addresses

253

Aggregation hierarchy

254

Propagation

• A mechanism where an operation in an aggregate is implemented

by having the aggregate perform that operation on its parts

• At the same time, properties of the parts are often propagated

back to the aggregate

• Propagation is to aggregation as inheritance is to generalization.

—The major difference is:

- inheritance is an implicit mechanism

- propagation has to be programmed when required

255

Interfaces

An interface describes a portion of the visible behaviour of a set of

objects.

• An interface is similar to a class, except it lacks instance variables

and implemented methods

256

Notes and descriptive text

• Descriptive text and other diagrams

—Embed your diagrams in a larger document

—Text can explain aspects of the system using any notation

you like

—Highlight and expand on important features, and give

rationale

• Notes:

—A note is a small block of text embedded in a UML

diagram

—It acts like a comment in a programming language

257

5.7 Object Constraint Language (OCL)

OCL is a specification language designed to formally specify

constraints in software modules

• An OCL expression simply specifies a logical fact (a

constraint) about the system that must remain true

• A constraint cannot have any side-effects

—it cannot compute a non-Boolean result nor modify any

data.

• OCL statements in class diagrams can specify what the values

of attributes and associations must be

258

OCL statements

OCL statements can be built from:

• References to role names, association names, attributes and

the results of operations

• The logical values true and false

• Logical operators such as and, or, =, >, < or <> (not equals)

• String values such as: ‘a string’

• Integers and real numbers

• Arithmetic operations *, /, +, -

259

An example: constraints on Polygons

260

5.8 Detailed Example: A Class Diagram for
Genealogy

261

Genealogy example: Possible solutions

262

5.9 The Process of Developing Class
Diagrams

You can create UML models at different stages and with

different purposes and levels of details

• Exploratory domain model:

—Developed in domain analysis to learn about the domain

• System domain model:

—Models aspects of the domain represented by the system

• System model:

—Includes also classes used to build the user interface and

system architecture

263

System domain model vs System model

264

System domain model vs System model

• The system domain model omits many classes that are needed
to build a complete system

—Can contain less than half the classes of the system.

—Should be developed to be used independently of
particular sets of

- user interface classes

- architectural classes

• The complete system model includes

—The system domain model

—User interface classes

—Architectural classes

—Utility classes

265

Suggested sequence of activities

• Identify a first set of candidate classes

• Add associations and attributes

• Find generalizations

• List the main responsibilities of each class

• Decide on specific operations

• Iterate over the entire process until the model is
satisfactory

—Add or delete classes, associations, attributes,
generalizations, responsibilities or operations

—Identify interfaces

—Apply design patterns (Chapter 6)

 Don’t be too disorganized. Don’t be too rigid either.

266

Identifying classes

• When developing a domain model you tend to discover

classes

• When you work on the user interface or the system

architecture, you tend to invent classes

—Needed to solve a particular design problem

—(Inventing may also occur when creating a domain model)

• Reuse should always be a concern

—Frameworks

—System extensions

—Similar systems

267

A simple technique for discovering domain
classes

• Look at a source material such as a description of

requirements

• Extract the nouns and noun phrases

• Eliminate nouns that:

—are redundant

—represent instances

—are vague or highly general

—not needed in the application

• Pay attention to classes in a domain model that represent types

of users or other actors

268

Identifying associations and attributes

• Start with classes you think are most central and important

• Decide on the clear and obvious data it must contain and its

relationships to other classes.

• Work outwards towards the classes that are less important.

• Avoid adding many associations and attributes to a class

—A system is simpler if it manipulates less information

269

Tips about identifying and specifying valid
associations

• An association should exist if a class

- possesses

- controls

- is connected to

- is related to

- is a part of

- has as parts

- is a member of, or

- has as members

 "" some other class in your model

• Specify the multiplicity at both ends

• Label it clearly.

270

Actions versus associations

• A common mistake is to represent actions as if they were

associations

Bad, due to the use of associations
that are actions

Better: The borrow operation creates a Loan, and
the return operation sets the returnedDate
attribute.

271

Identifying attributes

• Look for information that must be maintained about each class

• Several nouns rejected as classes, may now become attributes

• An attribute should generally contain a simple value

—E.g. string, number

272

Tips about identifying and specifying valid
attributes

• It is not good to have many duplicate attributes

• If a subset of a class’s attributes form a coherent group, then create

a distinct class containing these attributes

273

An example (attributes and associations)

274

Identifying generalizations and interfaces

• There are two ways to identify generalizations:

—bottom-up
- Group together similar classes creating a new superclass

—top-down
- Look for more general classes first, specialize them if needed

• Create an interface, instead of a superclass if

—The classes are very dissimilar except for having a few
operations in common

—One or more of the classes already have their own
superclasses

—Different implementations of the same class might be
available

275

An example (generalization)

276

Allocating responsibilities to classes

A responsibility is something that the system is required to do.

• Each functional requirement must be attributed to one of the classes

—All the responsibilities of a given class should be clearly related.

—If a class has too many responsibilities, consider splitting it into
distinct classes

—If a class has no responsibilities attached to it, then it is probably
useless

—When a responsibility cannot be attributed to any of the existing
classes, then a new class should be created

• To determine responsibilities

—Perform use case analysis

—Look for verbs and nouns describing actions in the system description

277

Categories of responsibilities

• Setting and getting the values of attributes

• Creating and initializing new instances

• Loading to and saving from persistent storage

• Destroying instances

• Adding and deleting links of associations

• Copying, converting, transforming, transmitting or outputting

• Computing numerical results

• Navigating and searching

• Other specialized work

278

An example (responsibilities)

• Creating a new regular flight

• Searching for a flight

• Modifying attributes of a flight

• Creating a specific flight

• Booking a passenger

• Canceling a booking

279

Prototyping a class diagram on paper

• As you identify classes, you write their names on small cards

• As you identify attributes and responsibilities, you list them

on the cards

— If you cannot fit all the responsibilities on one card:

- this suggests you should split the class into two related classes.

• Move the cards around on a whiteboard to arrange them into a

class diagram.

• Draw lines among the cards to represent associations and

generalizations.

280

Identifying operations

Operations are needed to realize the responsibilities of each

class

• There may be several operations per responsibility

• The main operations that implement a responsibility are

normally declared public

• Other methods that collaborate to perform the responsibility

must be as private as possible

281

An example (class collaboration)

282

Class collaboration ‘a’

Making a bi-directional link between two existing objects;

e.g. adding a link between an instance of SpecificFlight and
an instance of Airplane.

!

1." (public) The instance of SpecificFlight

— makes a one-directional link to the instance of
Airplane

— then calls operation 2.

2." (non-public) The instance of Airplane

— makes a one-directional link back to the instance
of SpecificFlight

AirplaneSpecificFlight * 0..1

283

Class collaboration ‘b’

Creating an object and linking it to an existing object

" e.g. creating a FlightLog, and linking it to a SpecificFlight.

!

1. (public) The instance of SpecificFlight

—calls the constructor of FlightLog (operation 2)

—then makes a one-directional link to the new
instance of FlightLog.

2. (non-public) Class FlightLog’s constructor

—makes a one-directional link back to the instance of
SpecificFlight.

1

284

Class collaboration ‘c’
Creating an association class, given two existing objects

e.g. creating an instance of Booking, which will link a SpecificFlight to
a PassengerRole.

1. (public) The instance of PassengerRole

— calls the constructor of Booking (operation 2).

2. (non-public) Class Booking’s constructor, among its other actions

— makes a one-directional link back to the instance of
PassengerRole

— makes a one-directional link to the instance of SpecificFlight

— calls operations 3 and 4.

3. (non-public) The instance of SpecificFlight

— makes a one-directional link to the instance of Booking.

4. (non-public) The instance of PassengerRole

— makes a one-directional link to the instance of Booking.

1
1

285

Class collaboration ‘d’

Changing the destination of a link

e.g. changing the Airplane of to a SpecificFlight, from
airplane1 to airplane2

 1. (public) The instance of SpecificFlight

—deletes the link to airplane1

—makes a one-directional link to airplane2

—calls operation 2

—then calls operation 3.

2. (non-public) airplane1

—deletes its one-directional link to the instance of
SpecificFlight.

3. (non-public) airplane2

—makes a one-directional link to the instance of
SpecificFlight.

286

Class collaboration ‘e’

Searching for an associated instance

e.g. searching for a crew member associated with a
SpecificFlight that has a certain name.

1. (public) The instance of SpecificFlight

— creates an Iterator over all the crewMember links of the
SpecificFlight\

— for each of them call operation 2, until it finds a match.

2. (may be public) The instance of EmployeeRole returns its
name.

287

5.10 Implementing Class Diagrams in Java

• Attributes are implemented as instance variables

• Generalizations are implemented using extends

• Interfaces are implemented using implements

• Associations are normally implemented using instance variables

• Divide each two-way association into two one-way associations

—so each associated class has an instance variable.

• For a one-way association where the multiplicity at the other

end is ‘one’ or ‘optional’

—declare a variable of that class (a reference)

• For a one-way association where the multiplicity at the other

end is ‘many’:

—use a collection class implementing List, such as Vector

288

5.11 Difficulties and Risks when creating class
diagrams

• Modeling is particularly difficult skill

—Even excellent programmers have difficulty thinking at the

appropriate level of abstraction

—Education traditionally focus more on design and

programming than modeling

• Resolution:

—Ensure that team members have adequate training

—Have experienced modeler as part of the team

—Review all models thoroughly

