
Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 4:

Developing Requirements

Lecture 4

191

4.1 Domain Analysis

The process by which a software engineer learns about the

domain to better understand the problem:

• The domain is the general field of business or technology in

which the clients will use the software

• A domain expert is a person who has a deep knowledge of the

domain

Benefits of performing domain analysis:

• Faster development

• Better system

• Anticipation of extensions

192

Domain Analysis document

A.! Introduction

B.! Glossary

C.! General knowledge about the domain

D.! Customers and users

E.! The environment

F.! Tasks and procedures currently performed

G.! Competing software

H.! Similarities to other domains

193

4.2 The Starting Point for Software Projects

green field project

194

4.3 Defining the Problem and the Scope

A problem can be expressed as:

• A difficulty the users or customers are facing,

• Or as an opportunity that will result in some benefit such as

improved productivity or sales.

The solution to the problem normally will entail developing

software

A good problem statement is short and succinct

195

Defining the Scope

Narrow the scope by defining a more precise problem

• List all the things you might imagine the system doing

—Exclude some of these things if too broad

—Determine high-level goals if too narrow

Example: A university registration system

196

4.4 What is a Requirement ?

It is a statement describing either

• 1) an aspect of what the proposed system must do,

• or 2) a constraint on the system’s development.

• In either case it must contribute in some way towards

adequately solving the customer’s problem;

• the set of requirements as a whole represents a negotiated

agreement among the stakeholders.

A collection of requirements is a requirements document.

197

4.5 Types of Requirements

Functional requirements

• Describe what the system should do

Quality requirements

• Constraints on the design to meet specified levels of quality

Platform requirements

• Constraints on the environment and technology of the system

Process requirements

• Constraints on the project plan and development methods

198

Functional Requirements

• What inputs the system should accept

• What outputs the system should produce

• What data the system should store that other systems might

use

• What computations the system should perform

• The timing and synchronization of the above

199

Quality Requirements

All must be verifiable

Examples: Constraints on

• Response time

• Throughput

• Resource usage

• Reliability

• Availability

• Recovery from failure

• Allowances for maintainability and enhancement

• Allowances for reusability

200

4.6 Use-Cases: describing how the user will
use the system

A use case is a typical sequence of actions that a user

performs in order to complete a given task

• The objective of use case analysis is to model the system

from the point of view of

… how users interact with this system

… when trying to achieve their objectives.

It is one of the key activities in requirements analysis

• A use case model consists of

— a set of use cases

— an optional description or diagram indicating how they

are related

201

Use cases

A use case should

• Cover the full sequence of steps from the beginning of a task

until the end.

• Describe the user’s interaction with the system ...

—Not the computations the system performs.

• Be written so as to be as independent as possible from any

particular user interface design.

• Only include actions in which the actor interacts with the

computer.

—Not actions a user does manually

202

Scenarios

A scenario is an instance of a use case

• A specific occurrence of the use case

—a specific actor ...

—at a specific time ...

—with specific data.

203

How to describe a single use case

A. Name: Give a short, descriptive name to the use case.

B. Actors: List the actors who can perform this use case.

C. Goals: Explain what the actor or actors are trying to achieve.

D. Preconditions: State of the system before the use case.

E. Summary: Give a short informal description.

F. Related use cases.

G. Steps: Describe each step using a 2-column format.

H. Postconditions: State of the system in following completion.

A and G are the most important

204

Use case diagrams

205

Extensions

• Used to make optional interactions explicit or to handle

exceptional cases.

• Keep the description of the basic use case simple.

206

Generalizations

• Much like superclasses in a class diagram.

• A generalized use case represents several similar use cases.

• One or more specializations provides details of the similar use

cases.

207

Inclusions

• Allow one to express commonality between several different
use cases.

• Are included in other use cases

—Even very different use cases can share sequence of
actions.

—Enable you to avoid repeating details in multiple use
cases.

• Represent the performing of a lower-level task with a lower-
level goal.

208

Example of generalization, extension and
inclusion

209

Example description of a use case

Use case: Open file

Related use cases:

Generalization of:
• Open file by typing name
• Open file by browsing

Steps:

Actor actions System responses

1. Choose ‘Open…’ command 2. File open dialog appears
3. Specify filename
4. Confirm selection 5. Dialog disappears

210

Example (continued)

Use case: Open file by typing name

Related use cases:

Specialization of: Open file

Steps:
Actor actions System responses

1. Choose ‘Open…’ command 2. File open dialog appears
3a. Select text field
3b. Type file name
4. Click ‘Open’ 5. Dialog disappears

211

The modeling processes: Choosing use
cases on which to focus

• Often one use case (or a very small number) can be identified

as central to the system

—The entire system can be built around this particular use

case

• There are other reasons for focusing on particular use cases:

—Some use cases will represent a high risk because for

some reason their implementation is problematic

—Some use cases will have high political or commercial

value

212

The benefits of basing software
development on use cases

They can

• Help to define the scope of the system

• Be used to plan the development process

• Be used to both develop and validate the requirements

• Form the basis for the definition of test cases

• Be used to structure user manuals

213

Use cases must not be seen as a panacea

• The use cases themselves must be validated

—Using the requirements validation methods.

• Some aspects of software are not covered by use case

analysis.

• Innovative solutions may not be considered.

214

4.7 Some Techniques for Gathering and
Analysing Requirements

Observation

• Read documents and discuss requirements with users

• Shadowing important potential users as they do their work

—ask the user to explain everything he or she is doing

• Session videotaping

Interviewing

• Conduct a series of interviews

—Ask about specific details

—Ask about the stakeholder’s vision for the future

—Ask if they have alternative ideas

—Ask for other sources of information

—Ask them to draw diagrams

215

Gathering and Analysing Requirements...

Brainstorming

• Appoint an experienced moderator

• Arrange the attendees around a table

• Decide on a ‘trigger question’

• Ask each participant to write an answer and pass the paper
to its neighbour

Joint Application Development (JAD) is a technique based on intensive

brainstorming sessions

216

Gathering and Analysing Requirements...

Prototyping

• The simplest kind: paper prototype.

—a set of pictures of the system that are shown to users in

sequence to explain what would happen

• The most common: a mock-up of the system’s UI

—Written in a rapid prototyping language

—Does not normally perform any computations, access any

databases or interact with any other systems

—May prototype a particular aspect of the system

217

Gathering and Analysing Requirements...

Use case analysis

• Determine the classes of users that will use the facilities of

this system (actors)

• Determine the tasks that each actor will need to do with the

system

218

4.8 Types of Requirements Document

• Requirements documents for
large systems are normally
arranged in a hierarchy

Requirements
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

subsystem 1 subsystem 2

Requirements
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements
Definition
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

sub-subsystems

sub-subsystems
Requirements
Definition

xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Definition
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements
Definition

xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Definition
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements
Definition

xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Definition
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements
Definition

xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Definition
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Two extremes:
An informal outline of the requirements using a few
paragraphs or simple diagrams

requirements definition
A long list of specifications that contain thousands of
pages of intricate detail

requirements specification

219

Level of detail required in a requirements
document

• How much detail should be provided depends on:

—The size of the system

—The need to interface to other systems

—The readership

—The stage in requirements gathering

—The level of experience with the domain and the
technology

—The cost that would be incurred if the requirements were
faulty

220

4.9 Reviewing Requirements

• Each individual requirement should

—Have benefits that outweigh the costs of development

—Be important for the solution of the current problem

—Be expressed using a clear and consistent notation

—Be unambiguous

—Be logically consistent

—Lead to a system of sufficient quality

—Be realistic with available resources

—Be verifiable

—Be uniquely identifiable

—Not over-constrain the design of the system

221

Requirements documents...

• The document should be:

—sufficiently complete

—well organized

—clear

—agreed to by all the stakeholders

• Traceability:

222

Requirements document...

A.! Problem

B.! Background information

C.! Environment and system models

D.! Functional Requirements

E.! Non-functional requirements

223

4.10 Managing Changing Requirements

Requirements change because:

• Business process changes

• Technology changes

• The problem becomes better understood

Requirements analysis never stops

• Continue to interact with the clients and users

• The benefits of changes must outweigh the costs.

—Certain small changes (e.g. look and feel of the UI) are usually
quick and easy to make at relatively little cost.

—Larger-scale changes have to be carefully assessed

- Forcing unexpected changes into a partially built system will
probably result in a poor design and late delivery

• Some changes are enhancements in disguise

—Avoid making the system bigger, only make it better

224

4.13 Difficulties and Risks in Domain and
Requirements Analysis

• Lack of understanding of the domain or the real problem

—Do domain analysis and prototyping

• Requirements change rapidly

—Perform incremental development, build flexibility into the design, do
regular reviews

• Attempting to do too much

—Document the problem boundaries at an early stage, carefully
estimate the time

• It may be hard to reconcile conflicting sets of requirements

—Brainstorming, JAD sessions, competing prototypes

• It is hard to state requirements precisely

—Break requirements down into simple sentences and review them
carefully, look for potential ambiguity, make early prototypes

