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Errors and failure

Inputs

Outputs

Error revealing

inputs cause failures

Erroneous outputs

indicate failures

Program
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Functional testing

Learning objectives

 What is functional testing?

 How to perform functional testing?

What are clues, test requirements, and test specifications?

How to generate test inputs? 

 What are equivalence partitioning, boundary value testing, domain 

testing, state testing, and decision table testing?
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What is functional testing?

 When test inputs are generated using program specifications, we say that 

we are doing functional testing.

 Functional testing tests how well a program meets the functionality 

requirements.
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The methodology

The derivation of test inputs is based on program specifications.

Clues are obtained from the specifications.

Clues lead to test requirements.

Test requirements lead to test specifications.

Test specifications are then used to actually execute the program under 

test.
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Specifications-continued

 Two types of pre-conditions are considered:

 Validated: those that are required to be validated by the program 

under test and an error action is required to be performed if the 

condition is not true. 

 Assumed: those that are assumed to be true and not checked by 

the program under test.
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Preconditions for sort
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Preconditions for sort

Validated:

N>0

On failure return -1; sorting considered unsuccessful.

Assumed:
The input sequence contains N integers.
The output area has space for at least N integers.
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Post-conditions

A post-condition specifies a property of the output of a program.

The general format of a post-condition is:

if condition then effect-1 {else effect-2}

Example:

For the sort program a post-condition is:

if N>0 then {the output sequence has the same elements as in the input 

sequence and in ascending order.}
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Incompleteness of specifications

Specifications may be incomplete or ambiguous.

Example post-condition: 

 if user places cursor on the name field then read a string 

 This post-condition does not specify any limit on the length of the 

input string hence is incomplete.
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Ambiguous specifications

It also does not make it clear as to

 whether a string should be input only after the user has placed the 

cursor on the name field and clicked the mouse or simply placed the 

cursor on the name field.

and hence is ambiguous.
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Clues: summary

Clues are:

Pre-conditions

Post-conditions

Variables,  

 e.g. A is a length implying thereby that its value cannot be negative.

Operations, 

 e.g. “search a list of names” or “find the average of total scores”

Definitions,  

 e.g. “filename(name) is a name with no spaces.”
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Flow graph for white-box testing

To help the programmer to systematically test the code

• Each branch in the code (such as if and while statements) 

creates a node in the graph

• The testing strategy has to reach a targeted coverage of 

statements and branches; the objective can be to:

—cover all possible paths (often infeasible)

—cover all possible edges (most efficient)

—cover all possible nodes (simpler)
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Flow graph for white-box testing

101

Black-box testing

Testers provide the system with inputs and observe the 

outputs

• They can see none of: 

—The source code

—The internal data

—Any of the design documentation describing the system’s 

internals 
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Equivalence partitioning

Input domain

1
2

3

4

Input domain 

partitioned into four 

sub-domains.
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Equivalence partitioning

Input domain

1
2

3

4

Input domain 

partitioned into four 

sub-domains.

Too many

test inputs.
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Equivalence partitioning

Input domain

1
2

3

4

Input domain 

partitioned into four 

sub-domains.

Too many

test inputs.

Four test inputs, one 

selected from each 

sub-domain.
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Two sub-domains
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Two sub-domains

X<0 X>=0
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Two sub-domains

X<0 X>=0
Equivalence class

Equivalence class
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Two sub-domains

One test case:

X= -3

X<0 X>=0
Equivalence class

Equivalence class
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Two sub-domains

One test case:

X= -3

Another  test case:

X= 15

X<0 X>=0
Equivalence class

Equivalence class
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Two sub-domains

One test case:

X= -3

Another  test case:

X= 15

All test inputs in  the X<0 sub-domain are considered equivalent.

The assumption is that if one test input in this sub-domain reveals

an error in the program, so will the others. 

This is true of the test inputs in the X>=0 sub-domain also.

X<0 X>=0
Equivalence class

Equivalence class
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Overlapping partitions

X<Y

X>=Y

Z>Y Z<=Y

X < Y,  Z > Y

X=3, Y=4, Z=7

X < Y,  Z <= Y

X=2, Y=3, Z=1

X >= Y,  Z > Y

X=15, Y=4, Z=7

 X >= Y,  Z <= Y

X=15, Y=4, Z=1
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Partitioning using non-numeric data
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Partitioning using non-numeric data

X: lc

X:UC

Y: null Y: not null
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Partitioning using non-numeric data

X: lc

X:UC

Y: null Y: not null

lc: Lower case character

UC: Upper case  character

null: null string.
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Partitioning using non-numeric data

X: lc

X:UC

Y: null Y: not nullX: lc, Y: null

lc: Lower case character

UC: Upper case  character

null: null string.
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Partitioning using non-numeric data

X: lc

X:UC

Y: null Y: not nullX: lc, Y: null

X: lc, Y: not null

lc: Lower case character

UC: Upper case  character

null: null string.
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Partitioning using non-numeric data

X: lc

X:UC

Y: null Y: not nullX: lc, Y: null

X: lc, Y: not null

X: UC, Y: null
lc: Lower case character

UC: Upper case  character

null: null string.
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Partitioning using non-numeric data

X: lc

X:UC

Y: null Y: not nullX: lc, Y: null

X: lc, Y: not null

X: UC, Y: null

X: UC, Y: not null

lc: Lower case character

UC: Upper case  character

null: null string.
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Boundary value analysis (BVA)

Another way to generate test cases is to look for boundary values.

Suppose a program takes an integer X as input.

 In the absence of any information, we assume that X = 0 is a 

boundary. Inputs to the program might lie on the boundary or on 

either side of the boundary.

January 02, 2009

F
unctiona

l te
sting

118

BVA: continued

This leads to 3 test inputs:

X = 0, X =- 20, and X = 14.

 

 Note that the values -20 and 14 are on either side of the boundary and are 

chosen arbitrarily.

 

 Notice that using BVA we get 3 equivalence classes. One of these 

three classes contains only one value (X=0), the other two  are 

large!
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BVA
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BVA-continued

In this case the four sides of the rectangle represent the boundary.

The heuristic for test selection in this case is:

Select one test at each corner (1, 2, 3, 4).

Select one test just outside of each of the four sides of the 

boundary (5, 6, 7, 8)
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BVA -continued

In the previous examples we considered only numeric data.

BVA can be done on any type of data.

For example, suppose that a program takes a string S and an integer 

X as inputs. The constraints on inputs are:

 length(S) <= 100  and a <= X <= b

Can you derive the test cases using BVA?
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BVA applied to output variables

Just as we applied BVA to input data, we can apply it to output data.

Doing so gives us equivalence classes for the output domain.

We then try to find test inputs that will cover each output 

equivalence class.
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8 rules of testing

1. Make sure all tests are fully automatic and check their own results

2. A test suite is a powerful bug detector that decapitates the time it takes to 
find bugs

3. Run your tests frequently  –  every test at least once a day.

4. When you get a bug report, start by writing a unit test that exposes the bug

5. Better to write and run incomplete tests than not run complete tests

6. Think of boundary conditions under which things might go wrong and 
concentrate your tests there

7. Don’t forget to test exceptions raised when things are expected to go wrong

8. Don’t let the fear that testing can’t catch all bugs stop you from writing 
tests that will catch most bugs

       – Martin Fowler, Refactoring
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10.3 Defects in Ordinary Algorithms 

Incorrect logical conditions

• Defect: 

—The logical conditions that govern looping and if-then-

else statements are wrongly formulated.

• Testing strategy: 

—Use equivalence class and boundary testing. 

—Consider as an input each variable used in a rule or logical 

condition.
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Example of incorrect logical conditions 
defect

• The landing gear must be deployed whenever the plane is within 2 minutes 

from landing or takeoff, or within 2000 feet from the ground. If visibility is 

less than 1000 feet, then the landing gear must be deployed whenever the 

plane is within 3 minutes from landing or lower than 2500 feet 

—Total number of system equivalence classes: 108
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Example of incorrect logical conditions 
defect

if(!landingGearDeployed &&
   (min(now-takeoffTime,estLandTime-now))<
     (visibility < 1000 ? 180 :120) ||
   relativeAltitude <
     (visibility < 1000 ? 2500 :2000)
  )
{
 throw 
   new LandingGearException();
}

What is the hard-to-find defect in the following code?
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Defects in Ordinary Algorithms

Performing a calculation in the wrong part of a control construct

• Defect: 

—The program performs an action when it should not, or does not 

perform an action when it should. 

—Typically caused by inappropriately excluding or including the action 

from a loop or a if construct.

• Testing strategies: 

—Design tests that execute each loop zero times, exactly once, and more 

than once. 

—Anything that could happen while looping is made to occur on the 

first, an intermediate, and the last iteration. 

 

145

Example of performing a calculation in the 
wrong part of a control construct

while(j<maximum)

{

    k=someOperation(j);

    j++;

}

if(k==-1) signalAnError();

if (j<maximum)

    doSomething();

if (debug) printDebugMessage();

else doSomethingElse();
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Defects in Ordinary Algorithms

Not terminating a loop or recursion

• Defect: 

—A loop or a recursion does not always terminate, i.e. it is 

‘infinite’. 

"

• Testing strategies: 

—Analyze what causes a repetitive action to be stopped.

—Run test cases that you anticipate might not be handled 

correctly.
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Defects in Ordinary Algorithms

Not setting up the correct preconditions for an algorithm

• Defect: 

—Preconditions state what must be true before the algorithm 

should be executed. 

—A defect would exist if a program proceeds to do its work, 

even when the preconditions are not satisfied.

• Testing strategy: 

—Run test cases in which each precondition is not satisfied.
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Defects in Ordinary Algorithms

Not handling null conditions

• Defect: 

—A null condition is a situation where there normally are 

one or more data items to process, but sometimes there are 

none. 

—It is a defect when a program behaves abnormally when a 

null condition is encountered.

• Testing strategy: 

—Brainstorm to determine unusual conditions and run 

appropriate tests.
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Defects in Ordinary Algorithms

Not handling singleton or non-singleton conditions

• Defect: 

—A singleton condition occurs when there is normally more 
than one of something, but sometimes there is only one. 

—A non-singleton condition is the inverse. 

—Defects occur when the unusual case is not properly 
handled.

• Testing strategy: 

—Brainstorm to determine unusual conditions and run 
appropriate tests.
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Defects in Ordinary Algorithms

Off-by-one errors

• Defect: 

—A program inappropriately adds or subtracts one.

—Or loops one too many times or one too few times. 

—This is a particularly common type of defect.

"

• Testing strategy: 

—Develop tests in which you verify that the program: 

- computes the correct numerical answer.

- performs the correct number of iterations.
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Example of off-by-one defect

for (i=1; i<arrayname.length; i++) 

{ 

     /* do something */ 

}

while (iterator.hasNext())

{

    anOperation(++val);

}

Use Iterators to help eliminate these defects
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Defects in Ordinary Algorithms

Operator precedence errors

• Defect: 

—An operator precedence error occurs when a programmer omits 

needed parentheses, or puts parentheses in the wrong place. 

—Operator precedence errors are often extremely obvious...

- but can occasionally lie hidden until special conditions arise.

—E.g. If x*y+z should be x*(y+z) this would be hidden if z was 

normally zero.

• Testing: 

—In software that computes formulae, run tests that anticipate 

such defects.
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Defects in Ordinary Algorithms

Use of inappropriate standard algorithms

• Defect: 

—An inappropriate standard algorithm is one that is 

unnecessarily inefficient or has some other property that is 

widely recognized as being bad.

"

• Testing strategies: 

—The tester has to know the properties of algorithms and 

design tests that will determine whether any undesirable 

algorithms have been implemented.
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Example of inappropriate standard 
algorithms

• An inefficient sort algorithm

—The most classical ‘bad’ choice of algorithm is sorting 

using a so-called ‘bubble sort’ 

• An inefficient search algorithm 

—Ensure that the search time does not increase 

unacceptably as the list gets longer

—Check that the position of the searched item does not have 

a noticeable impact on search time. 

• A non-stable sort 

• A search or sort that is case sensitive when it should not be, or 

vice versa 
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10.5 Defects in Timing and Co-ordination 

Deadlock and livelock

• Defects: 

—A deadlock is a situation where two or more threads are 

stopped, waiting for each other to do something.

- The system is hung 

—Livelock is similar, but now the system can do some 

computations, but can never get out of some states. 



156

Defects in Timing and Co-ordination 

Deadlock and livelock

• Testing strategies: 

—Deadlocks and livelocks occur due to unusual 

combinations of conditions that are hard to anticipate or 

reproduce. 

—It is often most effective to use inspection to detect such 

defects, rather than testing alone.

—However, when testing:

- Vary the time consumption of different threads.

- Run a large number of threads concurrently. 

- Deliberately deny resources to one or more threads.
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Example of deadlock
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Defects in Timing and Co-ordination

Critical races

• Defects: 

—One thread experiences a failure because another thread 

interferes with the ‘normal’ sequence of events.

• Testing strategies: 

—It is particularly hard to test for critical races using black 

box testing alone.

—One possible, although invasive, strategy is to deliberately 

slow down one of the threads.

—Use inspection.
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Example of critical race

a) Normal b) Abnormal due to delay in thread A
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Semaphore and synchronization

Critical races can be prevented by locking data so that they 

cannot be accessed by other threads when they are not ready

• One widely used locking mechanism is called a semaphore. 

• In Java, the synchronized keyword can be used.

—It ensures that no other thread can access an object until 

the synchronized method terminates.
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Example of a synchronized method

a) Abnormal: The value put by 
    thread A is immediately 
    overwritten by the value put 
    by thread B.

b) The problem has been solved 
     by accessing the data using 
     synchronized methods
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10.6 Defects in Handling Stress and 
Unusual Situations 

Insufficient throughput or response time on minimal 

configurations

• Defect: 

—On a minimal configuration, the system’s throughput or 

response time fail to meet requirements.

• Testing strategy: 

—Perform testing using minimally configured platforms.
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Defects in Handling Stress and Unusual 
Situations

Incompatibility with specific configurations of hardware or 

software

• Defect: 

—The system fails if it is run using particular configurations 

of hardware, operating systems and external libraries.

• Testing strategy: 

—Extensively execute the system with all possible 

configurations that might be encountered by users.
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Defects in Handling Stress and Unusual 
Situations

Defects in handling peak loads or missing resources

• Defects: 

—The system does not gracefully handle resource 
shortage.

—Resources that might be in short supply include:
- memory, disk space or network bandwidth, permission.

—The program being tested should report the problem 
in a way the user will understand. 

• Testing strategies: 

—Devise a method of denying the resources.

—Run a very large number of copies of the program 
being tested, all at the same time.
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Defects in Handling Stress and Unusual 
Situations

Inappropriate management of resources

• Defect: 

—A program uses certain resources but does not make them 

available when it no longer needs them.

• !Testing strategy: 

—Run the program intensively in such a way that it uses 

many resources, relinquishes them and then uses them 

again repeatedly.
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Defects in Handling Stress and Unusual 
Situations

Defects in the process of recovering from a crash

• Defects: 

—Any system will undergo a sudden failure if its hardware 
fails, or if its power is turned off. 

—It is a defect if the system is left in an unstable state and 
hence is unable to fully recover.

—It is also a defect if a system does not correctly deal with 
the crashes of related systems.

• Testing strategies: 

—Kill a program at various times during execution. 

—Try turning the power off, however operating systems 
themselves are often intolerant of doing that.
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Test plans

A test plan is a document that contains a complete set of test cases for a 

system

—Along with other information about the testing process. 

• The test plan is one of the standard forms of documentation.

• If a project does not have a test plan:

—Testing will inevitably be done in an ad-hoc manner.

—Leading to poor quality software.

• The test plan should be written long before the testing starts. 

• You can start to develop the test plan once you have developed the 

requirements.
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Information to include in a formal test case 

A. Identification and classification: 

—Each test case should have a number, and may also be given a descriptive 
title. 

—The system, subsystem or module being tested should also be clearly 
indicated.

—The importance of the test case should be indicated.

B. Instructions: 

—Tell the tester exactly what to do.

—The tester should not normally have to refer to any documentation in order 
to execute the instructions.

C. Expected result: 

—Tells the tester what the system should do in response to the instructions.

—The tester reports a failure if the expected result is not encountered.

D. Cleanup (when needed):  

—Tells the tester how to make the system go ‘back to normal’ or shut down 
after the test. 
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Levels of importance of test cases 

• Level 1: 

—First pass critical test cases.

—Designed to verify the system runs and is safe.

—No further testing is possible.

• Level 2: 

—General test cases. 

—Verify that day-to-day functions correctly. 

—Still permit testing of other aspects of the system.

• Level 3: 

—Detailed test cases. 

—Test requirements that are of lesser importance. 

—The system functions most of the time but has not yet met 

quality objectives.
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10.9 Strategies for Testing Large Systems 

Big bang testing versus integration testing 

• In big bang testing, you take the entire system and test it as a 

unit 

• A better strategy in most cases is incremental testing: 

—You test each individual subsystem in isolation

—Continue testing as you add more and more subsystems to 

the final product 

—Incremental testing can be performed horizontally or 

vertically, depending on the architecture

- Horizontal testing can be used when the system is divided into 

separate sub-applications  
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Top down testing 

• Start by testing just the user interface.

• The underlying functionality are simulated by stubs. 

—Pieces of code that have the same interface as the lower 

level functionality.

—Do not perform any real computations or manipulate any 

real data. 

• Then you work downwards, integrating lower and lower 

layers.

• The big drawback to top down testing is the cost of writing 

the stubs. 
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Bottom-up testing 

• Start by testing the very lowest levels of the software.

• You needs drivers to test the lower layers of software. 

—Drivers are simple programs designed specifically for 

testing that make calls to the lower layers.

• Drivers in bottom-up testing have a similar role to stubs in 

top-down testing, and are time-consuming to write.
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Regression testing

• It tends to be far too expensive to re-run every single test case 
every time a change is made to software. 

• Hence only a subset of the previously-successful test cases is 
actually re-run. 

• This process is called regression testing.

—The tests that are re-run are called regression tests. 

• Regression test cases are carefully selected to cover as much 
of the system as possible.

The “law of conservation of bugs”:

• The number of bugs remaining in a large system is 
proportional to the number of bugs already fixed 
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Testing or inspecting, which comes first?

• It is important to inspect software before extensively testing it. 

• The reason for this is that inspecting allows you to quickly get 

rid of many defects. 

• If you test first, and inspectors recommend that redesign is 

needed, the testing work has been wasted. 

—There is a growing consensus that it is most efficient to 

inspect software before any testing is done.

• Even before developer testing
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MB1.   Is the algorithm consistent with the detailed design 

pseudocode and/or flowchart?   

MB2.   Does the code assume no more than the stated preconditions?

MB3.   Does the code 

  produce                             

  every one of the 

  postconditions?

MB4.   Does the code respect the required invariant?

MB5.   Does every loop terminate? 

MB6.   Are required notational standards observed? 

MB7.   Has every line been thoroughly checked?

MB8.   Are all braces balanced? 

MB9.   Are illegal parameters considered? (see section tbd)

MB10. Does the code return the correct type?  

Inspect Code 5 of 5: 

Method Bodies

Adapted from Software Engineering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission.


