Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 10:
Testing and Inspecting to Ensure High Quality

Lecture 3

www.lloseng.com

Testing

@ When should we test?
® Separate phase for testing? OR
® At the end of every phase? OR

® During each phase, simultaneously with all development and
maintenance activities

January 02, 2009 70

Terminology

@ Program - Sort
@ Specification
Input: p - array of n integers, n>0
Output: q - array of n integers such that

" q[0]=q[l]=..=q[n]
B Elements in q are a permutation of elements in p, which are
unchanged

* Description of requirements of a program

January 02, 2009 71

Tests

@ Test input (Test case)
A set of values given as input to a program
Includes environment variables
*{2,3,6,5, 4}

@ Test set
* A set of test cases
«{{0},{9,8,7,6,5},(1,3,4,5},{2,1,2,3}}

January 02, 2009 72

Oracle

@ Function that determines whether or not the results of executing a
program under test is as per the program's specifications

Software

Problems
Under Test

Failure? ° Correctness of Oracle
Success? ° Correctness of Specs

+ Generation of Oracle
Oracle Gutput - Need more formal
specs

January 02, 2009 73

Correctness

@ Program Correctness

® A program P is considered with respect to a specification S, if and
only if:

® For each valid input, the output of P is in accordance with the
specification S

@ What if the specifications are themselves incorrect?

January 02, 2009 74

Errors, defects, faults

@ Often used interchangeably.

@ Error:

* Mistake made by programmer.

Human action that results in the software containing a fault/defect.
@ Defect / Fault:

* Manifestation of the error in a program.

Condition that causes the system to fail.

Synonymous with bug

January 02, 2009 75

Failure

@ Incorrect program behavior due to a fault in the program.
@ Failure can be determined only with respect to a set of requirement
specs.

@ For failure to occur, the testing of the program should force the
erroneous portion of the program to be executed.

—The frequency of failures measures the reliability

— An important design objective is to achieve a very low failure rate and
hence high reliability.

January 02, 2009 76

Errors and failure

Error revealing

Inputs : :
inputs cause failures
|
S
=
S
=1
g Program
% Erroneous outputs
Outputs indicate failures
January 02, 2009 77

Testing Objectives

* Testing is a process of executing a program with the intent of finding an
error.

A good test is one that has a high probability of finding an as yet
undiscovered error.

® A successful test is one that uncovers an as yet undiscovered error.

The objective is to desigh tests that systematically uncover different classes of
errors and do so with a minimum amount of time and effort.

Secondary benefits include

* Demonstrate that software functions appear to be working according to
specification

® That performance requirements appear to have been met.

Data collected during testing provides a good indication of software reliability
and some indication of software quality.

Testing cannot show the absence of defects,

it can only show that software defects are present.
January 02,2009 78

Test Case Design

@ Desighing good test case is of ten as difficult and work intensive as coding the
original program
..this is why most of us don't do it, but we should

@ Black box testing -- testing that code conforms to a design

@ White box testing -- testing that code conforms to its specification

Suradauisu

January 02, 2009 79

Execution-based testing

@ Execution-based testing is a process of inferring certain behavioral
properties of a product, based, in part, on the results of executing
the product in a known environment with selected inputs.

@ Depends on environment and inputs

@ How well do we know the environment?

@ How much control do we have over test inputs?
Real time systems

January 02, 2009 80

Reliability

@ Probability of failure-free operation of a product for a given time
duration

@ How often does the product fail?
mean time between failures

@ How bad are the effects?

@ How long does it take to repair it?
* mean time to repair

@ Failure behavior controlled by
Number of faults
Operational profile of execution

January 02, 2009 81

Robustness

@ How well does the product behave with
range of operating conditions
possibility of unacceptable results with valid input?
possibility of unacceptable results with invalid input?

@ Should not crash even when not used under permissible conditions

January 02, 2009 82

Performance

@ To what extent does the product meet its requirements with regard
to

response time
® space requirements

@ What if there are too many clients/ processes, etc...

January 02, 2009 83

Levels of testing

@ Unit testing

@ Integration testing
@ System testing

@ Acceptance testing

January 02, 2009 84

Functional testing

Learning objectives

What is functional testing?
How fo perform functional testing?

What are equivalence partitioning, boundary value testing, domain
testing, state testing, and decision table testing?

bujjsa} |puoiyoung

January 02, 2009 85

What is functional testing?

When test inputs are generated using program specifications, we say that
we are doing functional testing.

Functional testing tests how well a program meets the functionality
requirements.

-
c
3
(3]
=
(=]
3
=1
-+
o©
(%]
=
3

January 02, 2009 86

The methodology

The derivation of test inputs is based on program specifications.
Clues are obtained from the specifications.

Clues lead to test requirements.

Test requirements lead to test specifications.

o
c

=

= Test specifications are then used to actually execute the program under
=3

=y

: test.

=

January 02, 2009 87

Specifications-continued

Two types of pre-conditions are considered:

Validated: those that are required to be validated by the program
under test and an error action is required to be performed if the
condition is not true.

Assumed: those that are assumed to be true and not checked by
the program under test.

-
c
=
(3]
=
(=]
=3
=1
-+
o©
(%]
=
=

January 02, 2009 88

Preconditions for

bujjsa} |puoiyoung

January 02, 2009 89

Preconditions for

Validated:
N>0
On failure return -1; sorting considered unsuccessful.

Assumed:
The input sequence contains N integers.
The output area has space for at least N integers.

-
c
3
3]
=
(=]
3
=1
-+
o©
(%]
=
3

January 02, 2009 89

Post-conditions

A post-condition specifies a property of the output of a program.
The general format of a post-condition is:

if condition then effect-1 {else effect-2}
Example:

For the sort program a post-condition is:

if N>O then {the output sequence has the same elements as in the input
sequence and in ascending order.}

bujjsa} |puoiyoung

January 02, 2009 90

Incompleteness of specifications

Specifications may be incomplete or ambiguous.

Example post-condition:

if user places cursor on the name field then read a string

This post-condition does not specify any limit on the length of the
input string hence is incomplefte.

-
c
=
(3]
=
(=]
=3
=1
-+
o©
(%]
=
=

January 02, 2009 91

Ambiguous specifications

It also does not make it clear as to

whether a string should be input only after the user has placed the
cursor on the name field and clicked the mouse or simply placed the
cursor on the name field.

and hence is ambiguous.

bujjsa} |puoiyoung

January 02, 2009 92

Clues: summary

Clues are:
Pre-conditions
Post-conditions
Variables,
e.g. A is a length implying thereby that its value cannot be negative.
Operations,
e.g. "search a list of names" or "find the average of total scores”

-
c
3
3]
=
(=]
3
=1
-+
o©
(%]
=
3

Definitions,
e.g. "filename(name) is a name with no spaces.”

January 02, 2009 93

Clues

@ Ideally variables, operations and definitions should be a part of at
least one pre- or post-condition.

@ However, this may not be the case as specifications are not
always written formally.

January 02, 2009 94

Test requirements checklist

@ Obtaining clues and deriving test requirements can be tedious.
@ Make a checklist of cluse to keep it from overwhelming you.

@ Derive test requirements from the clues checklist.

January 02, 2009 95

White box testing

@ Testing control structures of a procedural design.
@ Can derive test cases to ensure:
1. all independent paths are exercised at least once.
2. all logical decisions are exercised for both true and false paths.
3. all loops are executed at their boundaries and within operational bounds.
4. all internal data structures are exercised to ensure validity

@ Why do white box testing when black box testing is used to test
conformance to requirements?

® Logic errors and incorrect assumptions most likely to be made when coding
for "special cases". Need to ensure these execution paths are tested.

* May find assumptions about execution paths incorrect, and so make design
errors. White box testing can find these errors.

* Typographical errors are random. Just as likely to be on an obscure logical
path as on a mainstream path.

"Bugs lurk in corners and congregate at boundaries"

January 02, 2009 96

White box testing

@ Control flow testing

Conditions Testing -- Condition testing aims to exercise all logical conditions
in a program module. Focus on testing each condition in the
program.Strategies proposed include:

B Branch testing - execute every branch at least once.
® Domain Testing - uses three or four tests for every relational operator.
® Branch and relational operator testing - uses condition constraints

* Loop testing

® Simple Loops of size n:
- Skip loop entirely
- Only one pass through loop; then two passes
- m passes through loop where m < n.
- (n-1), n, and (n+1) passes through the loop.
= Nested Loops-

- Start with inner loop. Set all other loops to minimum values.

- Conduct simple loop testing on inner loop.

- Work outwards

- Continue until all loops tested.

January 02, 2009 97

Black box testing

@ Focus on functional requirements Attempts to find:
#® incorrect or missing functions

interface errors

® errors in data structures

* performance errors

® initialisation and termination errors.+

@ Equivalence Partitioning -- Divide the input domain into classes of data for
which test cases can be generated. Attempting to uncover classes of errors.
Based on equivalence classes for input conditions. An equivalence class
represents a set of valid or invalid states. An input condition is either a
specific numeric value, range of values, a set of related values, or a boolean
condition.

@ Boundary Value Analysis -- Large number of errors tend to occur at
boundaries of the input domain. BVA leads to selection of test cases that
exercise boundary values.. Rather than select any element in an equivalence
class, select those at the ''edge’ of the class.

January 02, 2009 98

Flow graph for white-box testing

To help the programmer to systematically test the code

e Each branch in the code (such as if and while statements)
creates a node in the graph

 The testing strategy has to reach a targeted coverage of
statements and branches; the objective can be to:

—cover all possible paths (often infeasible)
—cover all possible edges (most efficient)

—cover all possible nodes (simpler)

99

Flow graph for white-box testing

_ R readyToStop= false;
.—-{- A enter/serverSTarred) serverStarted|) ; /1A
J, try
= B) {
i while(!readyToStop) // B
¥ [readyToStop] {
try
i {
(C do/serverSocker.accept) Socket clientSocket = serverSocket.accept(); // C
- T - synchronized (this)
[InterruptedI0Exception] ![I0Exception] {
) if (lreadyToStop) // D
' D g {
\ . S if (connectionfactory == mull) { // E
[readyToStop]) new ComnectionToClient (/I F
this.clientThreadGroup, clientSocket, this);
_E] } else {
tionFact . conngctlor}Factow.createCannf,-ctlonII .-’;"G
[connec mn_:uiﬁ this.clientThreadGroup, clientSocket, this);
| 1 1
F b G }
enter / create ‘ emer/ create | 1
_ConnectionToClient /) |_using factory J } ; ;
7 [catch (InterruptedIOException exception) { }

[I0Exception]

{
i if (!lreadyToStop) // H

{
= listeningBxception (exception); // I
[l readyToStop] T }
C | enter / listeningException ’J_‘j[

(J enter / serverStoppe

Ve

a - }
i’IOException] ¥ } ’ .
catch (I0Exception exceptilon)
H

inally

— e —

~ readyToStep = true; [/ J
') connecticnListener = mull;
serverStopped() ;

.\!)}

Black-box testing

Testers provide the system with inputs and observe the
outputs

* They can see none of:
—The source code
—The internal data

— Any of the design documentation describing the system’s

internals

101

Equivalence partitioning

@ Why?
Input domain is usually too large (e.g. infinite) for exhaustive
testing.

Q@ How?
Partition into a finite number of sub-domains and select test
inputs.
Each sub-domain is an equivalence class and serves as a source of
at least one test input.

January 02, 2009 102

Equivalence partitioning

Input domain
partitioned into four

Input domain sub-domains.

January 02, 2009 103

Equivalence partitioning

Input domain
partitioned into four

Input domain sub-domains.

Too many
test inputs.

January 02, 2009 103

Equivalence partitioning

Input domain
partitioned into four

Input domain sub-domains.

Four test inputs, one
Too many
. selected from each
test inpufts. .
sub-domain.

January 02, 2009 103

How to partition?

@ Inputs to a program provide clues to partitioning.

@ Example:
Suppose that program P takes an integer input X
For X < O perform task T1 and
® for X >= 0 perform task T2.

January 02, 2009 104

How to partition?

@ The input domain is prohibitively large as X can assume the whole
range of integer values.

@ However, we expect P to behave the same way for all X < 0.

@ Similarly, we expect P to perform the same way for all values of
X>=0.

@ We therefore partition the input domain of P into two sub-domains.

January 02, 2009 105

Two sub-domains

bujjsa} |puoiyoung

January 02, 2009 106

Two sub-domains

-
c
3
3]
=
(=]
3
=1
-+
o©
(%]
=
3

January 02, 2009 106

Two sub-domains

Equivalence class

Equivalence class

bujjsa} |puoiyoung

January 02, 2009 106

Two sub-domains

One test case:)
X= - Equivalence class

Equivalence class

-
c
3
3]
=
(=]
3
=1
-+
o©
(%]
=
3

January 02, 2009 106

Two sub-domains

One test case:

X= -

Equivalence class

Equivalence class Another test case:

X= 15

January 02, 2009 106

Two sub-domains

One test case:

X= -

Equivalence class

Equivalence class Another test case:

X= 15

All test inputs in the X<0 sub-domain are considered equivalent.
The assumption is that if one test input in this sub-domain reveals
an error in the program, so will the others.

This is true of the test inputs in the X>=0 sub-domain also.

January 02, 2009 106

Non-overlapping partitions

@ In the previous example, the two equivalence classes are non-
overlapping. In other words the two sub-domains are disjoint.

@ When the sub-domains are disjoint, it is sufficient to pick one
test input from each equivalence class to test the program.

@ An equivalence class is considered covered when at least one test
has been selected from it.

@ In partition testing our goal is to cover all equivalence classes.

January 02, 2009 107

Overlapping partitions

@ Example:

Suppose that program P takes three integers X, Y and Z.
It is known that:

mX<Y

mzZs>Y

January 02, 2009 108

Overlapping partitions

X<Y, Z<=Y.
X=2,Y=3,7-1
’ ’ X>=Y, Z<=Y
% X=15,Y=4, Z=1
g X<Y, Z>
< X=3,Y=4, Z=7
X>=Y, Z>Y
X=15,Y=4, Z=7
January 02, 2009 109

Overlapping partition-test selection

@ In this example, we could select 4 test cases as:
® X=4,Y=7,7Z=1 satisfies X <Y
® X=4,Y=2,7=1 satisfies X»>= Y
® X=1,Y=7,Z=9 satisfies Z>Y
® X=1,Y=7,7=2 satisfies Z<«= Y

@ Thus, we have one test case from each equivalence class.

January 02, 2009 110

Overlapping partition-test selection

@ However, we may also select only 2 test inputs and satisfy all four
equivalence classes:

® X=4,Y=7, Z=1 satisfies X<Y and Z<=Y
* X=4,Y=2, Z=3 satisfies X>=Y and Z>Y
@ Thus, we have reduced the number of test cases from 4 to 2 while
covering each equivalence class.

January 02, 2009 1

Partitioning using non-numeric data

@ In the previous two examples the inputs were integers. One can
derive equivalence classes for other types of data also.

@ Example 3:

Suppose that program P takes one character X and one string
Y as inputs.

P performs task T1 for all lower case characters and T2 for
upper case characters.

Also, it performs task T3 for the null string and T4 for all
other strings.

January 02, 2009 112

Partitioning using non-numeric data

bujjsa} |puoiyoung

January 02, 2009 113

Partitioning using non-numeric data

X:UC

-
c
3
3]
=
(=]
3
=1
-+
o©
(%]
=
3

e nuﬁ \ Y: not null

January 02, 2009 113

Partitioning using non-numeric data

X:UC

bujjsa} |puoiyoung

Y: nuﬁ \ Y not null

lc: Lower case character
UC: Upper case character
null: null string.

January 02, 2009 113

Partitioning using non-numeric data

X:UC
X:Ic, Y: null

-
c
3
3]
=
(=]
3
=1
-+
o©
(%]
=
3

e nuﬁ \ Y: not null

lc: Lower case character
UC: Upper case character
null: null string.

January 02, 2009 113

Partitioning using non-numeric data

X: Ic, Y: not null

g

a3

g X:UC

g X:le, Y: null v nuli\“ Y- not null

2 : ‘.
lc: Lower case character
UC: Upper case character
null: null string.

January 02, 2009 113

Partitioning using non-numeric data

X: Ic, Y: not null

X:UC
X:Ic, Y: null

-
c
3
3]
=
(=]
3
=1
-+
o©
(%]
=
3

e nuﬁ \ Y: not null

) : lc: Lower case character
X: UG, Y- null UC: Upper case character
null: null string.

January 02, 2009 113

Partitioning using non-numeric data

X: lc, Y: not null

X: UC, Y: not null

o

g’ X X:UC

g X: 1c, Y: null v null Y- not null

] ;
) : lc: Lower case character
X: UG, Y- null UC: Upper case character
null: null string.
January 02, 2009 113

Non-numeric data

@ Once again we have overlapping partitions.

@ We can select only 2 test inputs to cover all four equivalence
classes. These are:

* X: lower case, Y: null string
X: upper case, Y: not a null string

January 02, 2009 114

Guidelines for equivalence partitioning

@ Input condition specifies a range: create one for the valid case
and two for the invalid cases.

eg. for a<= X <= b the classes are
B A<= X<=b (valid case)
® X <aand X > b (the invalid cases)

@ Input condition specifies a value: create one for the valid value
and two for incorrect values (below and above the valid value).
This may not be possible for certain data types, e.g. for boolean.

@ Input condition specifies a member of a set: create one for the
valid value and one for the invalid (not in the set) value.

January 02, 2009 115

Sufficiency of partitions

@ In the previous examples we derived equivalence classes based on
the conditions satisfied by the input data.

@ Then we selected just enough tests to cover each partition.
@ Think of the advantages and disadvantages of this approach!

January 02, 2009 116

Boundary value analysis (BVA)

Another way to generate test cases is to look for boundary values.
Suppose a program takes an integer X as input.

In the absence of any information, we assume that X =0 is a
boundary. Inputs to the program might lie on the boundary or on
either side of the boundary.

bujjsa} |puoiyoung

January 02, 2009 117

BVA: continued

This leads to 3 test inputs:
X=0,X=-20,and X = 14,

Note that the values -20 and 14 are on either side of the boundary and are
chosen arbitrarily.

-
c
=
(3]
=
(=]
=3
=1
-+
o©
(%]
=
=

Notice that using BVA we get 3 equivalence classes. One of these
three classes contains only one value (X=0), the other fwo are
largel!

January 02, 2009 118

bujjsa} |puoiyoung

BVA

January 02, 2009 119

BVA

@ Now suppose that a program takes two integers X and Y and that
xl <= X<=x2andyl<=Y <=y2.

January 02, 2009 119

BVA

@ Now suppose that a program takes two integers X and Y and that
xl <= X<=x2andyl<=Y <=y2.

x1 x2

January 02, 2009 119

BVA

@ Now suppose that a program takes two integers X and Y and that
xl <= X<=x2andyl<=Y <=y2.

x1 x2

January 02, 2009 119

BVA

@ Now suppose that a program takes two integers X and Y and that
xl <= X<=x2andyl<=Y <=y2.

x1 x2

January 02, 2009 119

BVA

@ Now suppose that a program takes two integers X and Y and that
xl <= X<=x2andyl<=Y <=y2.

9a
2. 139

x1 x2

January 02, 2009 119

BVA

@ Now suppose that a program takes two integers X and Y and that
xl <= X<=x2andyl<=Y <=y2.

5 2
y2 1 11 - 10.
8 9a 6
12 13
y1 i w 7 3
x1 x2
January 02, 2009 119

BVA

@ Now suppose that a program takes two integers X and Y and that
xl <= X<=x2andyl<=Y <=y2.

m]4
o 1 2> 2
Y » 0™
8 On 13 6
yl 12. .7 3
x1 x2

January 02, 2009 119

BVA-continued

In this case the four sides of the rectangle represent the boundary.
The heuristic for test selection in this case is:
Select one test at each corner (1, 2, 3, 4).

Select one test just outside of each of the four sides of the
boundary (5, 6, 7, 8)

bujjsa} |puoiyoung

January 02, 2009 120

BVA-continued

@ Select one test just inside of each of the four sides of the
boundary (10, 11, 12, 13).

@ Select one test case inside of the bounded region (9).
@ Select one test case outside of the bounded region (14).

How many equivalence classes do we get?

January 02, 2009 121

bujjsa} |puoiyoung

-
c
=
(3]
=
(=]
=3
=1
-+
o©
(%]
=
=

BVA -continued

In the previous examples we considered only numeric data.
BVA can be done on any type of data.

For example, suppose that a program takes a string S and an integer
X as inputs. The constraints on inputs are:

length(S) <= 100 and a<= X<=b

Can you derive the test cases using BVA?

January 02, 2009 122

BVA applied to output variables

Just as we applied BVA to input data, we can apply it to output data.
Doing so gives us equivalence classes for the output domain.

We then try to find test inputs that will cover each output

equivalence class.

January 02, 2009 123

Summary

@ Specifications, pre-conditions, and post-conditions.
@ Clues, test requirements, and test specifications.

@ Clues from code.

@ Test requirements catalog.

@ Equivalence partitioning and boundary value analysis.

January 02, 2009 124

JUnit, a testing framework

@ JUnit is an open-source testing framework (Gamma, Beck) that
provides:
classes for writing Test Cases and Test Suites
methods for setting up an cleaning up test data (“fixtures")
methods for making assertions
textual and graphical tools for running ftests
@ It simplifies and automates the task of writing repeatable unit test.

@ JUnit distinguishes between failures and errors:

A failure is a failed assertion, i.e., an anticipated problem that you
check

® Anerror is a condition you didn't check for.

January 02, 2009 125

Frameworks vs Libraries

@ In traditional application architectures, user-code uses library functionality
by invoking methods defined in library classes

Library classes

@ A framework reverses the usual relationship between generic and application
code. Frameworks provide both generic functionality and application
architecture:

Framework App

Yy V VY

Suradauisu

@ Essentially a framework says: "Don't call me, I'll call you"
(Fr‘(%n%%%r'ks are much harder to write)

January

126

JUnit example

@ Testing a FileReader class

class FileReaderTester extends TestCase {
public FileReaderTester (String name) {
super (name) ;
}

FileReader _input;

NB placing tests in a separate file implies a tradeoff.
Separate the test code from the application code (+)
* No space overhead in the final application (+)

=
ra
-
=
o
o
-
—
=
el

* No access to private/protected members (-)
One more file to manage (-)

January 02, 2009 127

Setting up a test case

@ The TestCase class provides two methods for manipulating test
fixtures: setUp creates the objects used by the TestCase,
tearDown removes them

class FileReaderTester...
protected void setUp() {
try { _input = new FileReader (“data.text”);
} catch (FileNotFoundException e) {
throw new RuntimeException(“Unable to open file”) ;}
}
protected void tearDown () {
try { _input.close() ;
} catch (IOException e) {

Suradauisu

throw new RuntimeException(“Error closing file”) ;}

}

NB make sure to reset all static variables to their initial state in tearDown.
January 02, 2009 128

Writing tests

Q@ A test file: "data.text"
‘Bradman 12 45 16\EOF’

@ A test
public void testRead() throws IOException {
char ch = ‘&’ ;

for (int i=0; i < 4; i++)
ch = (char) _input.read();
assert ('d’==ch) ;
}

@ Invoking the test

class FileReaderTester
public static Test suite() {

=
ra
-
=
o
o
-
—
=
el

TestSuite suite = new TestSuite() ;
suite.addTest (new FileReaderTester (“testRead”)) ;
return suite; }

January 02, 2009 129

Running tests

@ The main method

class FileReaderTester...
public static void main(String[] args) ({
junit. textui.TestRunner.run(suite()))

@ Arun
Time 0.11

OK (1 tests)

Suradauisu

January 02, 2009 130

Failures

@ A deliberate bug:

public void testRead() throws IOException {

char ch = ‘&’ ;
for (int i=0; i < 4; i++)
ch = (char) _input.read();

assert (‘#’==ch) ;

@ Results
F
Time: 0.22

1M1 1FATILURES!!!
Test Results:
Run: lFailures: 1 Errors: O

=
ra
-
=
o
o
-
—
=
el

There was 1 failure:

l) FileReaderTester.testRead test.framework.AssertionFailedError

January 02, 2009 131

Suradauisu

=
ra
-
=
o
o
-
—
=
el

Failures (bis)

@ A deliberate bug:

public void testRead() throws IOException {

char ch = ‘&’ ;
for (int i=0; i < 4; i++)
ch = (char) _input.read();

assertEquals (“fourth char read”, ‘#’,ch);

@ Results
.F
Time: 0.22
11 I1FATLURES! !!
Test Results:
Run: lFailures: 1 Errors: 0
There was 1 failure:
1) FileReaderTester.testRead:
fourth char read expected “#” but was “d”

January 02, 2009 132

Failures (bis~2)

@ An error:
public void testRead() throws IOException {
char ch = ‘&’ ;

_input.close() ;
for (int i=0; i < 4; i++)

ch = (char) _input.read();
assertEquals (“fourth char read”, ‘#’,ch);

@ Results

Run: 1 Failures: 0 Errors: 2
There was 1 error:

1) FileReaderTester.testRead: java.io.IOException: Stream closed

NB always start by triggering an error, to be sure a test is actually run.

January 02, 2009 133

Testing Style

“The style here is to write a few lines of code, then a test that should
run, or even better, to write a test that won't run, then write the
code that will make it run.”

@ write unit tests that thoroughly test a single class
@ write tests as you develop (even before you implement)

@ write tests for every new piece of functionality

Suradauisu

"Developers should spend 25-50% of their time developing tests.”

January 02, 2009 134

What to test?

@ FileReader returns -1 at the end of a file

public void testReadEnd() throws IOException {

char ch = ‘&’ ;
for (int i=0; i < 16; i++)
ch = (char) _input.read();

assertEquals(-1,ch) ;
}

@ Invoking the test
class FileReaderTester
public static Test suite() {
TestSuite suite = new TestSuite() ;
suite.addTest (new FileReaderTester (“testRead”)) ;
suite.addTest (new FileReaderTester (“testReadEnd”)) ;

return suite; }

=
ra
-
=
o
o
-
—
=
el

January 02, 2009 135

Shortcut

@ Instead of using the suite() method, write

public static void main (String[] args) {

junit.textui.TestRunner (new TestSuite (FileReaderTester.class) ;

tests are extracted by reflection

Suradauisu

January 02, 2009 136

What to test?

@ Test boundary conditions

public void testReadBoundaries() throws IOException {
assertEquals(“read first char”, ‘B’, _input.read()):
int ch;
for (int i=0; i < 15; i++)
ch = input.read();
assertEquals (“read last char”, ‘6’, _input.read());
assertEquals (“read at end”,-1, input.read()):;

=
ra
-
=
o
o
-
—
=
el

January 02, 2009 137

What to test?

@ Test special conditions

public void testEmptyRead() throws IOException {
File empty = new File (“empty.text”) ;
FileOutputStream out = new FileOutputStream(empty) ;
out.close() ;
FileReader in new FileReader (empty) ;

assertEquals (-1, in.read());

Suradauisu

January 02, 2009 138

What to test?

@ Test exceptions

public void testReadAfterClose() throws IOException {
_input.close() ;
try {
_input.read() ;
fail (“no exception for read past end”);

} catch (IOException io) {}

=
ra
-
=
o
o
-
—
=
el

January 02, 2009 139

8 rules of testing

1. Make sure all tests are fully automatic and check their own results

2. A test suite is a powerful bug detector that decapitates the time it takes to
find bugs

3. Runyour tests frequently - every test at least once a day.
4. When you get a bug report, start by writing a unit test that exposes the bug
5. Better o write and run incomplete tests than not run complete tests

6. Think of boundary conditions under which things might go wrong and
concentrate your tests there

7. Don't forget to test exceptions raised when things are expected o go wrong

8. Don't let the fear that testing can't catch all bugs stop you from writing
tests that will catch most bugs

- Martin Fowler, Refactoring
January 02, 2009 140

10.3 Defects in Ordinary Algorithms

Incorrect logical conditions
e Defect:

—The logical conditions that govern looping and if-then-
else statements are wrongly formulated.

» Testing strategy:.
—Use equivalence class and boundary testing.

—Consider as an input each variable used in a rule or logical
condition.

141

Example of incorrect logical conditions
defect

* The landing gear must be deployed whenever the plane is within 2 minutes

from landing or takeoff, or within 2000 feet from the ground. If visibility is
less than 1000 feet, then the landing gear must be deployed whenever the

plane is within 3 minutes from landing or lower than 2500 feet

—Total number of system equivalence classes: 108

Variable affecting condition Equivalence classes

Time since take-off 3: Within 2 minutes after take-off, 2-3 minutes
after take-off, more than 3 minutes after
takeoff

Time to landing 3: Within 2 minutes prior to landing, 2-3

minutes prior to landing, more than 3
minutes prior to landing

Relative altitude 3: < 2000 feet, 2000 feet to 2500 feet, 2500 feet
Vlsibilit}’ < 1000 feet, 1000 feet

by

Landing gear deployed 2: true, false

142

Example of incorrect logical conditions
defect

What is the hard-to-find defect in the following code?

if (!landingGearDeployed &&
(min(now-takeoffTime,estLandTime-now))<
(visibility < 1000 ? 180 :120) ||
relativeAltitude <
(visibility < 1000 ? 2500 :2000)
)
{

throw

. . " visibility < 1000 ft
new LandingGearException(

\1 —f
gttt

T atinuds 20002500

143

Defects in Ordinary Algorithms

Performing a calculation in the wrong part of a control construct
* Defect:
—The program performs an action when it should not, or does not
perform an action when it should.
—Typically caused by inappropriately excluding or including the action
from a loop or a if construct.
e Testing strategies:
—Design tests that execute each loop zero times, exactly once, and more
than once.

— Anything that could happen while looping is made to occur on the
first, an intermediate, and the last iteration.

144

Example of performing a calculation in the
wrong part of a control construct

while (j<maximum)

{
k=someOperation (j) ;
j++;

}

if (k==-1) signalAnError();

if (j<maximum)

doSomething() ;
if (debug) printDebugMessage () ;
else doSomethingElse() ;

145

Defects in Ordinary Algorithms

Not terminating a loop or recursion
e Defect:

— A loop or a recursion does not always terminate, i.e. it is
‘infinite’.

* Testing strategies:
— Analyze what causes a repetitive action to be stopped.

—Run test cases that you anticipate might not be handled
correctly.

146

Defects in Ordinary Algorithms

Not setting up the correct preconditions for an algorithm
* Defect:

— Preconditions state what must be true before the algorithm
should be executed.

— A defect would exist if a program proceeds to do its work,
even when the preconditions are not satisfied.

 Testing strategy:.

—Run test cases in which each precondition is not satisfied.

147

Defects in Ordinary Algorithms

Not handling null conditions
e Defect:

— A null condition is a situation where there normally are
one or more data items to process, but sometimes there are
none.

—It is a defect when a program behaves abnormally when a
null condition is encountered.

* Testing strategy:

—Brainstorm to determine unusual conditions and run
appropriate tests.

148

Defects in Ordinary Algorithms

Not handling singleton or non-singleton conditions
* Defect:

— A singleton condition occurs when there is normally more
than one of something, but sometimes there is only one.

— A non-singleton condition is the inverse.

—Defects occur when the unusual case is not properly
handled.

* Testing strategy:

—Brainstorm to determine unusual conditions and run
appropriate tests.

149

Defects in Ordinary Algorithms

Off-by-one errors
e Defect:
— A program inappropriately adds or subtracts one.
—Or loops one too many times or one too few times.

—This is a particularly common type of defect.

» Testing strategy:.
—Develop tests in which you verify that the program:

- computes the correct numerical answer.

- performs the correct number of iterations.

150

Example of off-by-one defect

for (i=1; i<arrayname.length; i++)

{
/* do something */

}

Use Iterators to help eliminate these defects

while (iterator.hasNext())

{

anOperation (++val) ;

}

151

Defects in Ordinary Algorithms

Operator precedence errors
* Defect:

— An operator precedence error occurs when a programmer omits
needed parentheses, or puts parentheses in the wrong place.

— Operator precedence errors are often extremely obvious...
- but can occasionally lie hidden until special conditions arise.

—E.g. If x*y+z should be x*(y+z) this would be hidden if z was
normally zero.

* Testing:

—In software that computes formulae, run tests that anticipate
such defects.

152

Defects in Ordinary Algorithms

Use of inappropriate standard algorithms
e Defect:

—An 1nappropriate standard algorithm 1is one that is
unnecessarily inefficient or has some other property that is
widely recognized as being bad.

* Testing strategies:

—The tester has to know the properties of algorithms and
design tests that will determine whether any undesirable
algorithms have been implemented.

153

Example of inappropriate standard
algorithms

 An inefficient sort algorithm

—The most classical ‘bad’ choice of algorithm is sorting
using a so-called ‘bubble sort’

 An inefficient search algorithm

— Ensure that the search time does not increase
unacceptably as the list gets longer

—Check that the position of the searched item does not have
a noticeable impact on search time.

* A non-stable sort

e A search or sort that is case sensitive when it should not be, or
vice versa

154

10.5 Defects in Timing and Co-ordination

Deadlock and livelock
* Defects:

— A deadlock is a situation where two or more threads are
stopped, waiting for each other to do something.

- The system is hung

—Livelock is similar, but now the system can do some
computations, but can never get out of some states.

R = Teeale= s gm:ucu:récu:u CL
- m%@uﬁuﬁ —p e
R o 11

155

Defects in Timing and Co-ordination

Deadlock and livelock
e Testing strategies:

—Deadlocks and livelocks occur due to unusual
combinations of conditions that are hard to anticipate or
reproduce.

—1It is often most effective to use inspection to detect such
defects, rather than testing alone.

—However, when testing:
- Vary the time consumption of different threads.
- Run a large number of threads concurrently.

- Deliberately deny resources to one or more threads.

156

Example of deadlock

A:Thread O: P: B:Thread

| lock
— 1 i
waiting : ! | waiting
to lock O: i ! | to |ock&

157

Defects in Timing and Co-ordination

Critical races
e Defects:

—One thread experiences a failure because another thread
interferes with the ‘normal’ sequence of events.

» Testing strategies:.

—It 1s particularly hard to test for critical races using black
box testing alone.

—One possible, although invasive, strategy is to deliberately
slow down one of the threads.

— Use inspection.

158

Example of critical race

A:Thraad Data: B:Thraad A-Thread Diata: B:Thread

| T
1

1

L gel

1

a) Normal b) Abnormal due to delay in thread A

159

Semaphore and synchronization

Critical races can be prevented by locking data so that they
cannot be accessed by other threads when they are not ready

* One widely used locking mechanism is called a semaphore.

* In Java, the synchronized keyword can be used.

— It ensures that no other thread can access an object until
the synchronized method terminates.

Example of a synchronized method

160

Data: B:.Thread

A:Thraad

A:Thraad

B:Thread

e

ul

"
(=1
I.IL|
=) i
2

calc

1
ot
| | T

a) Abnormal: The value put by
thread A 1s immediately
overwritten by the value put
by thread B.

i

:

oo

get i|

wailing for A
1o complebs ifs
synchronized
operaion

b) The problem has been solved
by accessing the data using
synchronized methods

161

10.6 Defects in Handling Stress and
Unusual Situations

Insufficient throughput or response time on minimal
configurations
* Defect:
—On a minimal configuration, the system’s throughput or
response time fail to meet requirements.
* Testing strategy:
— Perform testing using minimally configured platforms.

162

Defects in Handling Stress and Unusual
Situations

Incompatibility with specific configurations of hardware or
software
* Defect:
—The system fails if it is run using particular configurations
of hardware, operating systems and external libraries.
* Testing strategy:

—Extensively execute the system with all possible
configurations that might be encountered by users.

163

Defects in Handling Stress and Unusual
Situations

Defects in handling peak loads or missing resources
* Defects:

—The system does not gracefully handle resource
shortage.

—Resources that might be in short supply include:
- memory, disk space or network bandwidth, permission.

— The program being tested should report the problem
in a way the user will understand.

» Testing strategies:
— Devise a method of denying the resources.

—Run a very large number of copies of the program
being tested, all at the same time.

164

Defects in Handling Stress and Unusual
Situations

Inappropriate management of resources
e Defect:

— A program uses certain resources but does not make them
available when it no longer needs them.

» Testing strategy:

—Run the program intensively in such a way that it uses
many resources, relinquishes them and then uses them
again repeatedly.

165

Defects in Handling Stress and Unusual
Situations

Defects in the process of recovering from a crash
* Defects:

— Any system will undergo a sudden failure if its hardware
fails, or if its power is turned off.

—It is a defect if the system is left in an unstable state and
hence is unable to fully recover.

— It is also a defect if a system does not correctly deal with
the crashes of related systems.

e Testing strategies:
—Kill a program at various times during execution.

—Try turning the power off, however operating systems
themselves are often intolerant of doing that.

166

Test plans

A test plan is a document that contains a complete set of test cases for a
system

— Along with other information about the testing process.
* The test plan is one of the standard forms of documentation.
* If a project does not have a test plan:

—Testing will inevitably be done in an ad-hoc manner.

—Leading to poor quality software.
* The test plan should be written long before the testing starts.

* You can start to develop the test plan once you have developed the
requirements.

167

Information to include in a formal test case

A. Identification and classification:

— Each test case should have a number, and may also be given a descriptive
title.

—The system, subsystem or module being tested should also be clearly
indicated.

— The importance of the test case should be indicated.
B. Instructions:
— Tell the tester exactly what to do.

— The tester should not normally have to refer to any documentation in order
to execute the instructions.

C. Expected result:
— Tells the tester what the system should do in response to the instructions.
— The tester reports a failure if the expected result is not encountered.

D. Cleanup (when needed):

— Tells the tester how to make the system go ‘back to normal’ or shut down
after the test.

168

Levels of importance of test cases

e Level 1:
—First pass critical test cases.
—Designed to verify the system runs and is safe.
—No further testing is possible.
e Level 2:
—General test cases.
— Verify that day-to-day functions correctly.
— Still permit testing of other aspects of the system.
* Level 3:
— Detailed test cases.
—Test requirements that are of lesser importance.

—The system functions most of the time but has not yet met
quality objectives.

169

10.9 Strategies for Testing Large Systems

Big bang testing versus integration testing
* In big bang testing, you take the entire system and test it as a
unit
* A better strategy in most cases is incremental testing:
— You test each individual subsystem in isolation

— Continue testing as you add more and more subsystems to
the final product

—Incremental testing can be performed horizontally or
vertically, depending on the architecture

- Horizontal testing can be used when the system is divided into
separate sub-applications

170

Top down testing

» Start by testing just the user interface.
* The underlying functionality are simulated by stubs.

—Pieces of code that have the same interface as the lower
level functionality.

—Do not perform any real computations or manipulate any
real data.

e Then you work downwards, integrating lower and lower
layers.

* The big drawback to top down testing is the cost of writing
the stubs.

171

Bottom-up testing

» Start by testing the very lowest levels of the software.
* You needs drivers to test the lower layers of software.
—Drivers are simple programs designed specifically for
testing that make calls to the lower layers.

* Drivers in bottom-up testing have a similar role to stubs in
top-down testing, and are time-consuming to write.

172

Regression testing

e It tends to be far too expensive to re-run every single test case
every time a change is made to software.

* Hence only a subset of the previously-successful test cases is
actually re-run.

* This process is called regression testing.
—The tests that are re-run are called regression tests.

» Regression test cases are carefully selected to cover as much
of the system as possible.

The “law of conservation of bugs™:

e The number of bugs remaining in a large system is
proportional to the number of bugs already fixed

173

Nonexecution-Based Testing

@ Person creating a product should not be the only one responsible for
reviewing it.
@ A document is is checked by a team of software professionals with a
range of skills.
@ Increases chances of finding a fault.
@ Types of reviews
* Walkthroughs
Inspections

January 02, 2009 174

Walkthroughs

Rep from Specs team Manager from Specs team
Client representative Rep of team from next phase
Rep from SQA group

@ Reviewer prepares two lists:
Ttems that the reviewer does not understand
Ttems that the reviewer believes are incorrect

January 02, 2009 175

Managing walkthroughs

@ Distribute material for walkthrough in advance.
@ Includes senior technical staff.
@ Chaired by the SQA representative.

@ Task is to record fault for later correction
* Not much time to fix it during walkthrough
Other individuals are trained to fix it better
Cost of 1 team vs cost of 1 person

Not all faults need to be fixed as not all "faults” flagged are
incorrect

January 02, 2009 176

Managing walkthroughs (contd.)

@ Two ways of doing walkthroughs
Participant driven
® Present lists of unclear items and incorrect items
® Rep from specs team responds to each query
Document driven

® Person responsible for document walks the participants through the
document

B Reviewers interrupt with prepared comments or comments triggered
by the presentation

@ Interactive process
@ Not to be used for the evaluation of participants

January 02, 2009 177

Inspections

@ Proposed by Fagan for testing
® designs
® code
@ An inspection goes beyond a walkthrough
@ Five formal stages
@ Stage 1 - Overview

Overview document (specs/design/code/ plan) to be prepared by
person responsible for producing the product.

Document is distributed to participants.

January 02, 2009 178

Inspections (contd.)

@ Stage 2 - Preparation
® Understand the document in detail.

List of fault types found in inspections ranked by frequency used for
concentrating efforts.

@ Stage 3 - Inspection
* Walk through the document and ensure that
® Each item is covered
B Every branch is taken at least once
B Find faults and document them (don't correct)

B | eader (moderator) produces a written report

January 02, 2009 179

Inspections (contd.)

@ Stage 4 - Rework
Resolve all faults and problems
@ Stage 5 - Follow-up

Moderator must ensure that every issue has been resolved in some
way

@ Team
Moderator-manager, leader of inspection team
Designer - team responsible for current phase
Implementer - team responsible for next phase
® Tester - preferably from SQA team

January 02, 2009 180

What to look for in inspections

@ Is each item in a specs doc adequately and correctly addressed?
@ Do actual and formal parameters match?

@ Error handling mechanisms identified?

@ Design compatible with hardware resources?

@ What about with software resources?

January 02, 2009 181

What to record in inspections

@ Record fault statistics
@ Categorize by severity, fault type

@ Compare # faults with average # faults in same stage of
development

@ Find disproportionate # in some modules, then begin checking other
modules

@ Too many faults => redesign the module

@ Information on fault types will help in code inspection in the same
module

January 02, 2009 182

Pros and cons of inspection

@ High number of faults found even before testing (design and code
inspections)

@ Higher programmer productivity, less time on module testing

@ Fewer faults found in product that was inspected before

@ If faults are detected early in the process there is a huge savings
@ What if walkthroughs are used for performance appraisal?

January 02, 2009 183

Testing or inspecting, which comes first?

e It is important to inspect software before extensively testing it.

* The reason for this is that inspecting allows you to quickly get
rid of many defects.

e If you test first, and inspectors recommend that redesign is
needed, the testing work has been wasted.

—There is a growing consensus that it is most efficient to
inspect software before any testing is done.

» Even before developer testing

184

Inspect Code 1 of 5: Classes Overall

Cl. Is its (the class’) name appropriate?
* consistent with the requirements and/or the design?
» sufficiently specialized / general?
C2. Could it be abstract (to be used only as a base)?
C3. Does its header describe its purpose?

C4. Does its header reference the requirements and/or design
element to which it corresponds?

C5. Does it state the package to which it belongs?

C6. Is it as private as it can be?

C7. Should it be final (Java)
C8. Have the documentation standards been applied?

January 02, 2009 185

Adapted from Sofiware Engineering: An Object-Oriented Perspective by Eric I. Braude (Wiley 2001), with permission.

Is it (the attribute) necessary?

Could it be static?
* Does every instance really need its InSPeCT Code

o:m I\;ar'ialzle?f I 2 Of 5 .
Should it be final? .
Attributes

* Does its value really change?
® Would a “getter” method alone be preferable (see section tbd)
Are the naming conventions properly applied?
Is it as private as possible?
Are the attributes as independent as possible?
Is there a comprehensive initialization strategy?
* at declaration-time?
with constructor(s)?
using static{}?
* Mix the above? How?

January 02, 2009 186

Adapted from Sofiware Engineering: An Object-Oriented Perspective by Eric I. Braude (Wiley 2001), with permission.

Inspect Code 3 of 5 : Constructors

CO1. Is it (the constructor) necessary?
* Would a factory method be preferable?
® More flexible

® Extra function call per construction
Does it leverage existing constructors?
(a Java-only capability)

Does it initialize of all the attributes?

Is it as private as possible?

Does it execute the inherited constructor(s) where

necessary?

January 02, 2009 187

Adapted from Sofiware Engineering: An Object-Oriented Perspective by Eric I. Braude (Wiley 2001), with permission.

MH1. TIs the method appropriately named?

+ method name consistent with
requirements &/or design?

Inspect Code 4 of

Is it as private as possible?

Could it be static? 5:

Should it be be final? Method Headers
Does the header describe method's purpose?

Does the method header reference
the requirements and/or
design section that it satisfies?

MH7. Does it state all necessary invariants?
MH8. Does it state all pre-conditions?
MH9. Does it state all post-conditions?
MH10.Does it apply documentation standards?

January 02, 2009 188

Adapted from Sofiware Engineering: An Object-Oriented Perspective by Eric I. Braude (Wiley 2001), with permission.

MB1. Is the algorithm consistent with the detailed design
pseudocode and/or flowchart?

MB2. Does the code assume no more than the stated preconditions?

MBS3. p?-::;he code Inspect Code 5 of 5:
Method Bodies

every one of the
postconditions?

MB4. Does the code respect the required invariant?

MB5. Does every loop terminate?

MB6. Are required notational standards observed?
MB7. Has every line been thoroughly checked?

MB8. Are all braces balanced?

MB9. Are illegal parameters considered? (see section tbd)
MB10. Does the code return the correct type?

January 02, 2009 189
Adapted from Software Engineering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission.

