
Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 2:

Review of Object Orientation

Lecture 2

42

2.1 What is Object Orientation?

Procedural paradigm:

• Software is organized around the notion of procedures

• Procedural abstraction

—Works as long as the data is simple

• Adding data abstractions

—Groups together the pieces of data that describe
some entity

—Helps reduce the system’s complexity.
- Such as Records and structures

Object oriented paradigm:

• Organizing procedural abstractions in the context of data
abstractions

43

Object Oriented paradigm

An approach to the solution of problems in which all

computations are performed in the context of objects.

• The objects are instances of classes, which:

—are data abstractions

—contain procedural abstractions that operate on the

objects

• A running program can be seen as a collection of objects

collaborating to perform a given task

44

A View of the Two paradigms

45

2.2 Classes and Objects

Object

• A chunk of structured data in a running software system

• Has properties

—Represent its state

• Has behaviour

—How it acts and reacts

—May simulate the behaviour of an object in the real

world

46

Objects

47

Classes

A class:

• A unit of abstraction in an object oriented (OO) program

• Represents similar objects

—Its instances

• A kind of software module

—Describes its instances’ structure (properties)

—Contains methods to implement their behaviour

• Something should be a class if it could have instances

• Something should be an instance if it is clearly a single member of the set
defined by a class

Film

• Class; instances are individual films.

Reel of Film:

• Class; instances are physical reels

Film reel with serial number SW19876

• Instance of ReelOfFilm

Science Fiction

• Instance of the class Genre.

Science Fiction Film

• Class; instances include ‘Star Wars’

Showing of ‘Star Wars’ in the Phoenix Cinema at 7 p.m.:

• Instance of ShowingOfFilm

48

Is Something a Class or an Instance?

49

Naming classes

• Use capital letters

—E.g. BankAccount not bankAccount

• Use singular nouns

• Use the right level of generality

—E.g. Municipality, not City

• Make sure the name has only one meaning

—E.g. ‘bus’ has several meanings

50

2.3 Instance Variables

Variables defined inside a class corresponding to data

present in each instance

• Attributes

—Simple data

—E.g. name, dateOfBirth

• Associations

—Relationships to other important classes

—E.g. supervisor, coursesTaken

—More on these in Chapter 5

51

Variables vs. Objects

A variable

• Refers to an object

• May refer to different objects at different points in time

An object can be referred to by several different

variables at the same time

Type of a variable

• Determines what classes of objects it may contain

52

Class variables

A class variable’s value is shared by all instances of a

class.

• Also called a static variable

• If one instance sets the value of a class variable, then all

the other instances see the same changed value.

• Class variables are useful for:

—Default or ‘constant’ values (e.g. PI)

—Lookup tables and similar structures

Caution: do not over-use class variables

53

2.4 Methods, Operations and Polymorphism

Operation

• A higher-level procedural abstraction that specifies a

type of behaviour

• Independent of any code which implements that

behaviour

—E.g. calculating area (in general)

54

Methods, Operations and Polymorphism

Method

• A procedural abstraction used to implement the

behaviour of a class.

• Several different classes can have methods with the

same name

—They implement the same abstract operation in ways

suitable to each class

—E.g. calculating area in a rectangle is done

differently from in a circle

55

Polymorphism

A property of object oriented software by which an

abstract operation may be performed in different ways in

different classes.

• Requires that there be multiple methods of the same

name

• The choice of which one to execute depends on the

object that is in a variable

• Reduces the need for programmers to code many if-

else or switch statements

56

2.5 Organizing Classes into Inheritance
Hierarchies

Superclasses

• Contain features common to a set of subclasses

Inheritance hierarchies

• Show the relationships among superclasses and
subclasses

• A triangle shows a generalization

Inheritance

• The implicit possession by all subclasses of features
defined in its superclasses

57

An Example Inheritance Hierarchy

Inheritance

• The implicit possession by all subclasses of features
defined in its superclasses

58

The Isa Rule

Always check generalizations to ensure they obey the isa

rule

• “A checking account is an account”

• “A village is a municipality”

Should ‘Province’ be a subclass of ‘Country’?

• No, it violates the isa rule

—“A province is a country” is invalid!

59

A possible inheritance hierarchy of
mathematical objects

60

Make Sure all Inherited Features Make
Sense in Subclasses

61

2.6 Inheritance, Polymorphism
and Variables

62

Some Operations in the Shape Example

63

Abstract Classes and Methods

An operation should be declared to exist at the highest
class in the hierarchy where it makes sense

• The operation may be abstract (lacking implementation)
at that level

• If so, the class also must be abstract

—No instances can be created

—The opposite of an abstract class is a concrete class

• If a superclass has an abstract operation then its subclasses
at some level must have a concrete method for the
operation

—Leaf classes must have or inherit concrete methods for
all operations

—Leaf classes must be concrete

64

Overriding

A method would be inherited, but a subclass contains a

new version instead

• For restriction

—E.g. scale(x,y) would not work in Circle

• For extension

—E.g. SavingsAccount might charge an extra fee

following every debit

• For optimization

—E.g. The getPerimeterLength method in

Circle is much simpler than the one in Ellipse

65

How a decision is made about which method
to run

1.! If there is a concrete method for the operation in

the current class, run that method.

2.! Otherwise, check in the immediate superclass to

see if there is a method there; if so, run it.

3.! Repeat step 2, looking in successively higher

superclasses until a concrete method is found and

run.

4.! If no method is found, then there is an error

• In Java and C++ the program would not have

compiled

66

Dynamic binding

Occurs when decision about which method to run can

only be made at run time

• Needed when:

—A variable is declared to have a superclass as its

type, and

—There is more than one possible polymorphic
method that could be run among the type of the

variable and its subclasses

67

2.7 Concepts that Define Object Orientation
The following are necessary for a system or language to be OO

• Identity

—Each object is distinct from each other object, and can be referred

to

—Two objects are distinct even if they have the same data

• Classes

—The code is organized using classes, each of which describes a set

of objects

• Inheritance

—The mechanism where features in a hierarchy inherit from

superclasses to subclasses

• Polymorphism

—The mechanism by which several methods can have the same

name and implement the same abstract operation.

68

Other Key Concepts
Abstraction

• Object -> something in the world

• Class -> objects

• Superclass -> subclasses

• Operation -> methods

• Attributes and associations -> instance variables

Modularity

• Code can be constructed entirely of classes

Encapsulation

• Details can be hidden in classes

• This gives rise to information hiding:

—Programmers do not need to know all the details of a class

