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2.1 What is Object Orientation?

Procedural paradigm:

• Software is organized around the notion of procedures 

• Procedural abstraction

—Works as long as the data is simple

• Adding data abstractions 

—Groups together the pieces of data that describe 
some entity 

—Helps reduce the system’s complexity. 
- Such as Records and structures

Object oriented paradigm: 

• Organizing procedural abstractions in the context of data 
abstractions
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Object Oriented paradigm

An approach to the solution of problems in which all 

computations are performed in the context of objects. 

• The objects are instances of classes, which:

—are data abstractions

—contain procedural abstractions that operate on the 

objects

• A running program can be seen as a collection of objects 

collaborating to perform a given task 
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A View of the Two paradigms
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2.2 Classes and Objects

Object

• A chunk of structured data in a running software system 

• Has properties

—Represent its state

• Has behaviour

—How it acts and reacts

—May simulate the behaviour of an object in the real 

world
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Objects
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Classes

A class:

• A unit of abstraction in an object oriented (OO) program 

• Represents similar objects

—Its instances

• A kind of software module

—Describes its instances’ structure (properties)

—Contains methods to implement their behaviour

• Something should be a class if it could have instances

• Something should be an instance if it is clearly a single member of the set 
defined by a class  

Film

• Class; instances are individual films.

Reel of Film:

• Class; instances are physical reels

Film reel with serial number SW19876

• Instance of ReelOfFilm

Science Fiction

• Instance of the class Genre.

Science Fiction Film

• Class; instances include ‘Star Wars’

Showing of ‘Star Wars’ in the Phoenix Cinema at 7 p.m.:

• Instance of ShowingOfFilm
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Is Something a Class or an Instance?
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Naming classes

• Use capital letters

—E.g. BankAccount not bankAccount

• Use singular nouns

• Use the right level of generality

—E.g. Municipality, not City

• Make sure the name has only one meaning

—E.g. ‘bus’ has several meanings
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2.3 Instance Variables

Variables defined inside a class corresponding to data 

present in each instance

• Attributes

—Simple data

—E.g. name, dateOfBirth

• Associations

—Relationships to other important classes

—E.g. supervisor, coursesTaken

—More on these in Chapter 5
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Variables vs. Objects

A variable

• Refers to an object 

• May refer to different objects at different points in time

An object can be referred to by several different 

variables at the same time

Type of a variable

• Determines what classes of objects it may contain 
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Class variables 

A class variable’s value is shared by all instances of a 

class. 

• Also called a static variable

• If one instance sets the value of a class variable, then all 

the other instances see the same changed value. 

• Class variables are useful for:

—Default or ‘constant’ values (e.g. PI)

—Lookup tables and similar structures

Caution: do not over-use class variables 
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2.4 Methods, Operations and Polymorphism

Operation

• A higher-level procedural abstraction that specifies a 

type of behaviour

• Independent of any code which implements that 

behaviour

—E.g. calculating area (in general)
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Methods, Operations and Polymorphism

Method

• A procedural abstraction used to implement the 

behaviour of a class.

• Several different classes can have methods with the 

same name

—They implement the same abstract operation in ways 

suitable to each class 

—E.g. calculating area in a rectangle is done 

differently from in a circle
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Polymorphism

A property of object oriented software by which an 

abstract operation may be performed in different ways in 

different classes.

• Requires that there be multiple methods of the same 

name

• The choice of which one to execute depends on the 

object that is in a variable

• Reduces the need for programmers to code many if-

else or switch statements
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2.5 Organizing Classes into Inheritance 
Hierarchies

Superclasses

• Contain features common to a set of subclasses

Inheritance hierarchies

• Show the relationships among superclasses and 
subclasses

• A triangle shows a generalization

Inheritance

• The implicit possession by all subclasses of features 
defined in its superclasses
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An Example Inheritance Hierarchy

Inheritance

• The implicit possession by all subclasses of features 
defined in its superclasses
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The Isa Rule

Always check generalizations to ensure they obey the isa 

rule

• “A checking account is an account”

• “A village is a municipality”

Should ‘Province’ be a subclass of ‘Country’?

• No, it violates the isa rule

—“A province is a country” is invalid!
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A possible inheritance hierarchy of 
mathematical objects 
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Make Sure all Inherited Features Make 
Sense in Subclasses
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2.6 Inheritance, Polymorphism 
and Variables
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Some Operations in the Shape Example
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Abstract Classes and Methods

An operation should be declared to exist at the highest 
class in the hierarchy where it makes sense

• The operation may be abstract (lacking implementation) 
at that level

• If so, the class also must be abstract

—No instances can be created

—The opposite of an abstract class is a concrete class

• If a superclass has an abstract operation then its subclasses 
at some level must have a concrete method for the 
operation

—Leaf classes must have or inherit concrete methods for 
all operations

—Leaf classes must be concrete
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Overriding

A method would be inherited, but a subclass contains a 

new version instead

• For restriction

—E.g. scale(x,y) would not work in Circle

• For extension

—E.g. SavingsAccount might charge an extra fee 

following every debit

• For optimization

—E.g. The getPerimeterLength method in 

Circle is much simpler than the one in Ellipse
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How a decision is made about which method 
to run

1.! If there is a concrete method for the operation in 

the current class, run that method.

2.! Otherwise, check in the immediate superclass to 

see if there is a method there; if so, run it.

3.! Repeat step 2, looking in successively higher 

superclasses until a concrete method is found and 

run.

4.! If no method is found, then there is an error

• In Java and C++ the program would not have 

compiled
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Dynamic binding

Occurs when decision about which method to run can 

only be made at run time

• Needed when:

—A variable is declared to have a superclass as its 

type, and

—There is more than one possible polymorphic 
method that could be run among the type of the 

variable and its subclasses
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2.7 Concepts that Define Object Orientation 
The following are necessary for a system or language to be OO

• Identity

—Each object is distinct from each other object, and can be referred 

to

—Two objects are distinct even if they have the same data

• Classes

—The code is organized using classes, each of which describes a set 

of objects

• Inheritance

—The mechanism where features in a hierarchy inherit from 

superclasses to subclasses

• Polymorphism

—The mechanism by which several methods can have the same 

name and implement the same abstract operation.

68

Other Key Concepts
Abstraction

• Object -> something in the world

• Class -> objects

• Superclass -> subclasses

• Operation -> methods

• Attributes and associations -> instance variables

Modularity

• Code can be constructed entirely of classes

Encapsulation

• Details can be hidden in classes

• This gives rise to information hiding: 

—Programmers do not need to know all the details of a class 


