CS 307

Software Engineering

Lecture 1

Course outline

@ Focus on practical software engineering techniques and tools for
component-based object oriented system. The objective of this
course is to learn how to design and construct OO systems.

@ Main topic areas identified by IEEE Software Engineering Body of
Knowledge:
* Software Engineering Process: Extreme Programming
* Software Design: Object oriented design with UML

* Software Construction: OO coding practices, design patterns,
refactoring, concurrency, aspect oriented programming

* Software Testing: integrated testing with Junit

* Software Engineering Tools and Methods: formal specification
techniques, design by contract, and tools

January 02, 2009 2

Goals of this course

@ Object-Oriented Software Engineering
* How to design system of objects

® How to exploit inheritance and subsumption to make systems generic
and flexible

How and when to refactor systems to simplify their designs

@ Software Quality
How to test and validate software
® Good coding practices
* How to document a design

January 02, 2009 3

Goals of this course

@ Communication
* How to work in groups
* How to keep software as simple as possible
* How to write software that communicates its design

@ Skills, techniques and tools

How to use debuggers, version control systems, profilers, make, and
others tools

January 02, 2009 4

Goals of this course

@ Assignments (individual & project pairs)

@ Project
A real software engineering project...

January 02, 2009 5

Workload

CS307 is a course with a fairly high workload, students should not
expect a traditional bubbles-and-arrows SE:

* three assignments

® one project

one midterm / final exam
Grading policy:

* Mid-nal 30%,

Assignments 10%

® Project 60%

January 02, 2009 6

Academic Integrity

All work that you submit in this course must be your own.
Unauthorized group efforts are considered academic dishonesty.

You may discuss homework in a general way with others, but you may not
consult any one else's written work. You are guilty of academic dishonesty

if:
® You examine another's solution to a programming assignment (PA)
® You allow another student to examine your solution to a PA

® You fail to take reasonable care to prevent another student from
examining your solution to a PA and that student does examine your
solution.

Automatic tools will be used to compare your solution to that of every
other current or past student. Don't con yourself into thinking you can
hide your collaboration. The risk of getting caught is too high, and the
standard penalty is way too high.

January 02, 2009 7

References

Lethbridge, Laganiere, Object-oriented Software Engineering: Practical
Software Development using UML and Java, MH 2001

* Braude, Software engineering: an object oriented perspective.

#* Gamma, Helm, Johnson, Vlissides, Design Pattern — Elements of
Reusable Object-Oriented Software, AW, 1995,

Beck, extreme Programming explained — Embrace Change, AW 1999.
* Fowler, Refactoring: Improving the Design of Existing Code, AW 1999.

® Pooley, Steven, Using UML — Software Engineering with Objects and
Components, AW, 1999.

Brooks, The Mythical Man-Month, AW, 1982.

January 02, 2009 8

Course Overview

o
O
(\}
(3]
-+
o
3
[\
S
-+
[\
Q)
]
o
=)
-+
b3
=]
3
o©
m)
=

DUlJda2Uul

January 02, 2009 9

Outline

@ Overview of main course topics
Software crisis
® Processes
* Software Quality
Object Oriented Programming
* UML
Design Patterns
Refactoring
* XP
@ Presentation of programming assignment 1 (PA1)

January 02, 2009 10

The Software Crisis

@ 1967 NATO study group coins the term Software Engineering

@ 1968 NATO declare software crisis; quality of software is abysmal
and deadlines and cost limits not met

@ The cost of software development

January 02, 2009 11

1.1 The Nature of Software...

Software is intangible
» Hard to understand development effort
Software is easy to reproduce
e Cost is in its development
—1n other engineering products, manufacturing is the costly
stage
The industry is labor-intensive

e Hard to automate

12

The Nature of Software ...

Untrained people can hack something together
* Quality problems are hard to notice
Software is easy to modify
* People make changes without fully understanding it
Software does not ‘wear out’
e It deteriorates by having its design changed:
—erroneously, or

—1in ways that were not anticipated, thus making it complex

13

The Nature of Software

Conclusions
* Much software has poor design and is getting worse
e Demand for software is high and rising
* We are in a perpetual ‘software crisis’

* We have to learn to ‘engineer’ software

14

1.2 What is Software Engineering?...

The process of solving customers’ problems by the
systematic development and evolution of large, high-
quality software systems within cost, time and other
constraints

Other definitions:

* IEEE: (1) the application of a systematic, disciplined, quantifiable approach
to the development, operation, maintenance of software; that is, the
application of engineering to software. (2) The study of approaches as in (1).

* The Canadian Standards Association: The systematic activities involved in
the design, implementation and testing of software to optimize its production
and support.

15

What is Software Engineering?...

Solving customers’ problems
* This is the goal of software engineering
* Sometimes the solution is to buy, not build
* Adding unnecessary features does not help solve the problem

* Software engineers must communicate effectively to identify
and understand the problem

16

Basic Activities of Software Engineering

(\}
(3]
-+
o
3
[\
S
-+
[\
Q)
]
o
=y
-+
b3
o
3
o©

bujJa22ulbug

AdaptedT ﬁpnlil %QYTM%gé ggigegering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission. 17

Basic Activities of Software Engineering

defining the software development process to be used

2U0MJ JO0S pajuUaldp 422l

m
=
O
S
(\}
(\}
3
S

Adaptecg mr)\rrlil %QYTM%gé ggigegering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission. 17

Basic Activities of Software Engineering

* defining the software development process to be used

managing the development project

o
O
(\}
(3]
-+
o
3
o©
S
-+
[\
Q)
]
o
=)
-+
b3
=]
3
o©
™)
=

bujldaaul

Adapted]- ﬁzr)‘rrlil %QYTM(/)agé ggigegering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission. 17

Basic Activities of Software Engineering

* defining the software development process to be used

managing the development project
* describing the intended software product

bu] 24DM| J0S pajuaidpo 422190

S
(\}
(\}
-
S

Adapted]- ﬁzr)‘rrlil %QYTM(/)agé ggigegering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission. 17

Basic Activities of Software Engineering

* defining the software development process to be used
managing the development project

* describing the intended software product

designing the product

o
O
(\}
(3]
-+
o
3
o©
S
-+
o©
Q)
]
o
=)
-+
b3
=]
3
o©
™)
=

bujldaaul

Adapted]- #gnlil %QYTM(/)agé !%gigegering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission. 17

Basic Activities of Software Engineering

* defining the software development process to be used
managing the development project

* describing the intended software product

designing the product

implementing the product

bu] 24DM| J0S pajuaidpo 422190

S
(\}
(\}
-
S

Adapted]- #gnlil %QYTM(/)agé !%gigegering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission. 17

o
O
(\}
(3]
-+
o
3
o©
=
-+
o©
Q)
]
o
=)
-+
b3
=]
3
o©
™)
=

bujldaaul

Adapted]- #gnlil %QYTM(?cEé glgigegering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission.

bu] 24DM| J0S pajuaidpo 422190

S
(\]
(\]
3
S

Adapted]- #gnlil %QYTM(?cEé glgigegering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission.

Basic Activities of Software Engineering

defining the software development process to be used
managing the development project

describing the intended software product

designing the product

implementing the product

testing the parts of the product

17

Basic Activities of Software Engineering

defining the software development process to be used
managing the development project

describing the intended software product

designing the product

implementing the product

testing the parts of the product
integrating the parts and testing them as a whole

17

o
O
(\}
(3]
-+
o
3
o©
=
-+
o©
Q)
]
o
=)
-+
b3
=]
3
o©
m)
=

Adapted]-#r)‘nlil%g}/m%gé ggigegering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission.

bu] 24DM| J0S pajuaidpo 422190

Basic Activities of Software Engineering

* defining the software development process to be used
managing the development project

* describing the intended software product

designing the product

* implementing the product

* testing the parts of the product

° integrating the parts and testing them as a whole

* maintaining the product

17

The Software Process

1. Requirements Phase
Requirements Phase Testing
2. Specification Phase
Specification Phase Testing
3. Design Phase
Design Phase Testing
4. Implementation Phase
Implementation Phase Testing
5. Integration Phase
Integration Phase Testing
6. Maintenance Phase
Maintenance Phase Testing
7. Retirement

January 02, 2009 18

Software Life-Cycle Models

@ Of waterfalls and spirals...

1
|

January 02, 2009 19

What is software quality?

@ Correctness is the ability of software products to perform their
exact tasks, as defined by their specifications

@ Robustness is the ability of software systems to react appropriately
to abnormal conditions

@ Extendibility is the ease of adapting software products to changes
of specification

@ Reusability is the ability of software elements to serve for the
construction of many different applications

@ Compatibility is the ease of combining software elements with others

@ Efficiency is the ability of a software system to place as few
demands as possible on hardware and software
environments

@ Ease of use is the ease with which people of various backgrounds

and qualifications can learn to use software products

Bertrand Meyer, Object-Oriented Software Construction, PH
January 02, 2009 20

How to achieve software quality

@ by Design
pre and post conditions, class invariants
disciplined exceptions

design patterns, refactoring

@ by Testing
unit tests, system tests
repeatable regression tests
® do it, do it right, do it fast
® Aim for simplicity and clarity, not performance

B Fine-tune performance only when there is a demonstrated need!

January 02, 2009 21

Software Quality (ctd)

Other Methods to attain quality level:
@ Inspection

team-oriented process for ensuring quality applied to all stages of
the process

@ Formal methods

* Mathematical techniques to convince ourselves and peers that our
programs do what they are meant to do applied selectively

@ Project control techniques
predict costs and schedule

control artifacts (versions, scope etc.)

January 02, 2009 22

Software Quality and the Stakeholders

Customer:
solves problems at

an acceptable cost in
terms of money paid and
resources used

User:

easy to learn;
efficient to use;
helps get work done

QUALITY
SOFTWARE

Developer: Development manager:
easy to design; sells more and
easy to maintain; pleases customers

easy to reuse its parts while costing less o
to develop and maintain

23

Software Quality: Conflicts and Objectives

The different qualities can conflict
* Increasing efficiency can reduce maintainability or reusability
* Increasing usability can reduce efficiency

Setting objectives for quality is a key engineering activity
* You then design to meet the objectives
* Avoids ‘over-engineering’ which wastes money

Optimizing is also sometimes necessary
 E.g. obtain the highest possible reliability using a fixed budget

24

Short Term Vs. Long Term Quality

Short term:
* Does the software meet the customer’s immediate needs?!

* [s it sufficiently efficient for the volume of data we have
today’!

Long term:
e Maintainability
e Customer’s future needs

e Scalability: Can the software handle larger volumes of data?

25

Why object-oriented programming

@ Modeling
Complex systems can be naturally decomposed into software objects
@ Data abstraction
Clients are protected from variations in implementation
@ Polymorphism
Clients can uniformly manipulate plug-compatible objects
@ Component reuse
Client/supplier contracts can be made explicit, simplifying reuse
@ Evolution
Classes and inheritance limit the impact of changes

January 02, 2009 26

UML

@ Unified Modeling Language a standardized set of techniques for
describing object oriented designs.

® Class models

* Use case models

® Interaction diagrams

State and activity diagrams

January 02, 2009 27

UML

@ Drawing editor class diagram

Shape

DrawingEditar

0+ BoundingBox()
CreateManipulator)

T

Line TextShape Textview
Hext
BoundingBox) BoundingBox() i
CreateManipulatord CreateManipulator) getExtent()

January 02, 2009 28

UML

@ Interaction diagram

editar : txshape text : Textiew
DrawingEditor Textshape

, BoundingBox() | getEwtent()

i

January 02, 2009

Refactoring

@ Refactor you design whenever the code starts to smell

* Methods that are too long or hard to read
® Decompose and delegate responsibilities
Duplicated code
® Factor out the common parts
Violation of encapsulation
Too much communication between objects
Big case statements
® Tntroduce subclass responsibilities
Hard to adapt to different context
® Separate mechanism from policy

January 02, 2009

XP

eXtreme Programming — Kent Beck
a light-weight methodology for small to medium sized teams developing
software in the face of vague and rapidly changing requirements
@ Tenets of XP:
If code reviews are good, then lets review all the time (pair programming)
If testing is good, everybody will test all the time (unit & functional testing)
¢ If design is good, make it part of the daily routine (refactoring)
* If simplicity is good, always choose the simplest design (KISS)
If integration testing is important, integrate and test several time a day

® If short iterations are good, make the iteration really short — minutes and
hours, not weeks and month

January 02, 2009 31

Why Java ?

Talking about Software Engineering without understanding programming is like
performing surgery with your eyes closed ... risky and painful

@ C++ - - complexity
@ Clean integration of feature
@ A language academics do not have to be ashamed of
@ Large standard library
@ Simple object model
Almost everything is an object
* No pointers
Garbage collection
Single inheritance
* Multiple subtyping
Static and dynamic type checking

January 02, 2009 32

Programming Assignment 1

(\}
(3]
-+
o
3
o©
S
-+
o©
Q)
]
o
=)
-+
b3
=]
3
o©

bujJa2ulbug

January 02, 2009 33

PA1

@ The goal of PAl is to implement one or more bit vector class(es).
@ A bit vector is a map from integer values to booleans.

simple ops:

bs.set(1); // bs.test(l) == true
bs.set (2); // bs.test(2) == true
if (bs.test(2)) bs.negate(l);

boolean v = bs.set(1l); // v == true

binary ops:
BitVector bv = bs.copy(); // bs.equals(bv)

bs.set (12); // bs.test(12) == true
bv.or(bs); // bv.test(12) == true

bv.unset (12); // bv.test(12) == true

bs.and (bv); // bs.test(12) == false

January 02, 2009 34

PA1

-
(2]
-+
- iteration:
o Iterator iter = bs.iterator;
> while (iter.hasNext())
iy boolean val = iter.getNext();
Q)
»
o
i for (iter.skipToSet(); iter.hasNext(); iter.skiptToSet()) {
& int pos = iter.position();
b iter.getNext();
(L
}
-
o©
o©
3
>
January 02, 2009 35

PA1

@ The Builder Pattern [GoF].
The Builder pattern allows a client object to construct a complex
object by specifying only its type and content. The client is
shielded from the details of the object’s construction.

Director Builder
Construci() BuildPari()

For all objectsin Structure {
Builder->Buil dP art()

¥

ConcreteBuilder B 4»..| Represen-

BulldPari)) tation B
G etResuli()
ConcreteBuilder A)
BuildPart() Y.,
GetResuli() '-,‘ Represen-

tation A

EemdE g & Albn L& O joce 0 risnad Bo kv reingin s ring: Con que ring Chorn & g L

Januar‘y OL, [4V,V) 36

PA1

@ Putting it all together

<< Interfaces»

Bitvector <<Interfacess> w=lnterfaces> <<Interface>
+testlindex: intl: boolean <€ _____ Bitvector Builder Director Builder Director
+setlindex: Int): bpolea.n +buildBitvectorl): BitVector _ +build(l: Object +makeBuilderidd: }: Director_Builder|
+unsetiindex: inth: boolean +buildBitvectorival: Bitvector): BlWecmr—[> F——- —>
+negate{index: int): boolean|
+oribs: Bitvectork: void .
+xoribs: BitVectork: void .
+copyll: BitVector - - Py
+iterator(): Iterator Bitvector_Descriptor
+builderl): Director_Builder <<Inerfaoess
+toString(}: String Director_Descriptor

-final optSpace_: boolean | ___ _ A N
_final optSpesd. - boolean [>+get[)escr|ptmnu. String|
-final low_: int

-final high_: int
-final checked_: boolean

K

<<lnterfans= +Bitvector_Descriptor{low: int, high: inth: void
Iterator +Bitvector_Descriptorl): void
+hasMext(l: boolean loptipeediboolean: int, checked: boolean): void
+getNext: boolean +optimizeSpacell: boolean
+positiond: int +optimizeSpeed(): boolean
[+skipToSetl): int +getlowerBound(): int
+skipToUnsetil: int +aetUpperBoundil: int

+boundCheckRequired(l: boolean
+getDescription(l: String
+andibs: BitVector): void

January 02, 2009 37

PA1

@ You will have to implement:
BitVector_xy implement BitVector
Iterator_xy implements BitVector.Iterator
Builder_xy implements BitVector.Builder
Director_xy implements Director

January 02, 2009 38

(\}
(3]
-+
o
3
o©
=
-+
o©
Q)
]
o
=)
-+
b3
=]
3
o©

nua

PA1

// Create one instance of a director.
static final Director director = new Director_jv();

// Create a descriptor for small and compact
// bit vectors with bound checks enabled.
static final BitVector.Descriptor small
= new BitVector.Descriptor(0, 31, false, true, true);

// Create a builder

static final BitVector.Builder builder

= (BitVector.Builder) director.make(small);

BitVector bs = builder.build();

January 02, 2009 39

PA1

Use cases

@ Small-sets This scenario is concerned with small bits vectors for
which the test, or and and methods are speed critical. Furthermore,
the size of data structures has to minimized. In the small-set
scenario, expect large numbers of vectors (thousands) with ranges
from O to 127.

@ Big-sets This scenario has a number of large, sparse, bit vectors
being used mostly for their set and test methods. In this scenario a
space efficient representation of large vectors and speed of tests
are critical. All other operations are used rather infrequently.

January 02, 2009 40

