
Software Engineering

Lecture 1

CS 307

January 02, 2009

O
 b

 j e
 c t O

 r i e
 n t e

 d
 S

 o f t w
 a

 r e
 E

 n g i n e
 e

 r i n g

9

Course Overview

12

1.1 The Nature of Software...

Software is intangible

• Hard to understand development effort

Software is easy to reproduce

• Cost is in its development

—in other engineering products, manufacturing is the costly

stage

The industry is labor-intensive

• Hard to automate

13

The Nature of Software ...

Untrained people can hack something together

• Quality problems are hard to notice

Software is easy to modify

• People make changes without fully understanding it

Software does not ‘wear out’

• It deteriorates by having its design changed:

—erroneously, or

—in ways that were not anticipated, thus making it complex

14

The Nature of Software

Conclusions

• Much software has poor design and is getting worse

• Demand for software is high and rising

• We are in a perpetual ‘software crisis’

• We have to learn to ‘engineer’ software

15

1.2 What is Software Engineering?...

The process of solving customers’ problems by the

systematic development and evolution of large, high-

quality software systems within cost, time and other

constraints

Other definitions:

• IEEE: (1) the application of a systematic, disciplined, quantifiable approach

to the development, operation, maintenance of software; that is, the

application of engineering to software. (2) The study of approaches as in (1).

• The Canadian Standards Association: The systematic activities involved in

the design, implementation and testing of software to optimize its production

and support.

16

What is Software Engineering?…

Solving customers’ problems

• This is the goal of software engineering

• Sometimes the solution is to buy, not build

• Adding unnecessary features does not help solve the problem

• Software engineers must communicate effectively to identify

and understand the problem

January 02, 2009

O
 b

 j e
 c t O

 r i e
 n t e

 d
 S

 o f t w
 a

 r e
 E

 n g i n e
 e

 r i n g

17

Basic Activities of Software Engineering

Adapted from Software Engineering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission.

January 02, 2009

O
 b

 j e
 c t O

 r i e
 n t e

 d
 S

 o f t w
 a

 r e
 E

 n g i n e
 e

 r i n g

17

Basic Activities of Software Engineering

• defining the software development process to be used

Adapted from Software Engineering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission.

January 02, 2009

O
 b

 j e
 c t O

 r i e
 n t e

 d
 S

 o f t w
 a

 r e
 E

 n g i n e
 e

 r i n g

17

Basic Activities of Software Engineering

• defining the software development process to be used

• managing the development project

Adapted from Software Engineering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission.

January 02, 2009

O
 b

 j e
 c t O

 r i e
 n t e

 d
 S

 o f t w
 a

 r e
 E

 n g i n e
 e

 r i n g

17

Basic Activities of Software Engineering

• defining the software development process to be used

• managing the development project

• describing the intended software product

Adapted from Software Engineering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission.

January 02, 2009

O
 b

 j e
 c t O

 r i e
 n t e

 d
 S

 o f t w
 a

 r e
 E

 n g i n e
 e

 r i n g

17

Basic Activities of Software Engineering

• defining the software development process to be used

• managing the development project

• describing the intended software product

• designing the product

Adapted from Software Engineering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission.

January 02, 2009

O
 b

 j e
 c t O

 r i e
 n t e

 d
 S

 o f t w
 a

 r e
 E

 n g i n e
 e

 r i n g

17

Basic Activities of Software Engineering

• defining the software development process to be used

• managing the development project

• describing the intended software product

• designing the product

• implementing the product

Adapted from Software Engineering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission.

January 02, 2009

O
 b

 j e
 c t O

 r i e
 n t e

 d
 S

 o f t w
 a

 r e
 E

 n g i n e
 e

 r i n g

17

Basic Activities of Software Engineering

• defining the software development process to be used

• managing the development project

• describing the intended software product

• designing the product

• implementing the product
• testing the parts of the product

Adapted from Software Engineering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission.

January 02, 2009

O
 b

 j e
 c t O

 r i e
 n t e

 d
 S

 o f t w
 a

 r e
 E

 n g i n e
 e

 r i n g

17

Basic Activities of Software Engineering

• defining the software development process to be used

• managing the development project

• describing the intended software product

• designing the product

• implementing the product
• testing the parts of the product
• integrating the parts and testing them as a whole

Adapted from Software Engineering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission.

January 02, 2009

O
 b

 j e
 c t O

 r i e
 n t e

 d
 S

 o f t w
 a

 r e
 E

 n g i n e
 e

 r i n g

17

Basic Activities of Software Engineering

• defining the software development process to be used

• managing the development project

• describing the intended software product

• designing the product

• implementing the product
• testing the parts of the product
• integrating the parts and testing them as a whole
• maintaining the product

Adapted from Software Engineering: An Object-Oriented Perspective by Eric J. Braude (Wiley 2001), with permission.

January 02, 2009

O
 b

 j e
 c t O

 r i e
 n t e

 d
 S

 o f t w
 a

 r e
 E

 n g i n e
 e

 r i n g

18

The Software Process

1. Requirements Phase

• Requirements Phase Testing

2. Specification Phase

• Specification Phase Testing

3. Design Phase

• Design Phase Testing

4. Implementation Phase

• Implementation Phase Testing

5. Integration Phase

• Integration Phase Testing

6. Maintenance Phase

• Maintenance Phase Testing

7. Retirement

23

Software Quality and the Stakeholders

QUALITY

SOFTWARE

Developer:

easy to design;

easy to maintain;

easy to reuse its parts

User:

easy to learn;

efficient to use;

helps get work done

Customer:

solves problems at

an acceptable cost in

terms of money paid and

resources used

Development manager:

sells more and

pleases customers

while costing less

to develop and maintain

24

Software Quality: Conflicts and Objectives

The different qualities can conflict

• Increasing efficiency can reduce maintainability or reusability

• Increasing usability can reduce efficiency

Setting objectives for quality is a key engineering activity

• You then design to meet the objectives

• Avoids ‘over-engineering’ which wastes money

Optimizing is also sometimes necessary

• E.g. obtain the highest possible reliability using a fixed budget

25

Short Term Vs. Long Term Quality

Short term:

• Does the software meet the customer’s immediate needs?

• Is it sufficiently efficient for the volume of data we have

today?

Long term:

• Maintainability

• Customer’s future needs

• Scalability: Can the software handle larger volumes of data?

January 02, 2009

O
 b

 j e
 c t O

 r i e
 n t e

 d
 S

 o f t w
 a

 r e
 E

 n g i n e
 e

 r i n g

33

Programming Assignment 1

January 02, 2009

O
 b

 j e
 c t O

 r i e
 n t e

 d
 S

 o f t w
 a

 r e
 E

 n g i n e
 e

 r i n g

35

PA1

iteration:

! Iterator iter = bs.iterator;

! while (iter.hasNext())

! ! boolean val = iter.getNext();

! ! …

!

! for (iter.skipToSet(); iter.hasNext(); iter.skiptToSet()) {

! ! int pos = iter.position();

! ! iter.getNext();

! ! …

! }

January 02, 2009

O
 b

 j e
 c t O

 r i e
 n t e

 d
 S

 o f t w
 a

 r e
 E

 n g i n e
 e

 r i n g

39

PA1

 // Create one instance of a director.

 static final Director director = new Director_jv();

 // Create a descriptor for small and compact

 // bit vectors with bound checks enabled.

 static final BitVector.Descriptor small

 = new BitVector.Descriptor(0, 31, false, true, true);

 // Create a builder

 static final BitVector.Builder builder

 = (BitVector.Builder) director.make(small);

! BitVector bs = builder.build();

