
Object-Oriented Software Engineering

Extra Chapter:

Software Metrics

Lecture 14

Why Measure Software?

Projects often

• Go over budget

• Miss deadlines

• Exhibit poor quality

Measurements can be used to improve the process and

quality

• Both short term (current) and long term (future)

Systematic improvement is not possible without

measurement

700

Software Metrics

Definition

• The measurement of the software development process and its

resulting product

The software product includes the source code, executable

code, and related documentation

Used to

• Estimate cost

• Estimate schedule

• Measure productivity

• Measure quality

701

Characteristics of Good Metrics

• Can be used to predict, not just describe

• Simple; precisely definable

• Objective

• Easily obtained; low cost

• Valid; relevant to intended measurement

• Robust; relatively insensitive to insignificant changes

702

Metrics Classification

 Process

• Measurements of the development process

• Examples

—Development time

—Methodology (Waterfall, Spiral, etc.)

—Average years of experience for development staff

 Product

• Measurements of software at any point in development

• Examples

—Design complexity

—Program size (source or executable) in lines of code

(LOC)

—Pages of documentation

703

More Classifications

Objective versus subjective

• Do different observers measure the same values?

• Examples

—Objective: LOC, development time

—Subjective: developer experience

Primitive versus computed

• Examples

—Primitive: LOC, development time

—Computed: LOC/Person-month, Defects/KLOC

704

Data Examples

Nominal

• Program type: database, network, application

Ordinal

• Programmer experience: low, medium, high

Interval

• Program complexity: 5, 4, 3, 2, 1

Ratio

• LOC: 2000 is twice as large as 1000

705

Process Metrics

For individuals

• Work distribution

• Estimated versus actual task duration and effort

• Code covered by unit testing

• Number of defects found by unit testing

706

Process Metrics

For project teams

• Work effort distribution

• Requirements status (number approved, implemented, and

verified)

• Percentage of test cases passed

• Estimated versus actual duration between milestones

• Staffing levels

• Defects found during testing and inspection

• Defect status

• Requirements stability

• Number of tasks planned and completed

707

Process Metrics

For development organizations

• Defect levels in released products

• Product development cycle time

• Schedule and effort estimating accuracy

• Reuse effectiveness

• Planned and actual cost

708

Product Metrics

Size

• Lines of code

• File, Flow, Process (FFP)

• Function points

Complexity

• More about these later

Quality

• Defect counts

• Reliability: mean time to failure

• Maintainability: complexity, %comments

709

Size: Lines of Code

Most common

Units

• Lines of code (LOC)

• Thousands delivered source instructions (KDSI)

Can be unreliable given the development stage

710

Problems with LOC Metrics

Only a portion of the development effort

• What about requirements? Models?

Different languages produce programs with different LOC

How should they be counted? Comments?

Not all code written is delivered to the client

The most accurate LOC measurement is obtained when the

project is complete

711

Size: File, Flow, Process

Files, flows and processes (FFP)

• File: collection of logically or physically related records that

are permanently resident

• Flow: a data interface between the product and the

environment

• Process: functionally defined logical or arithmetic

manipulation of data

Can be determined using the architectural design

Sum the number of files, flows, and processes

• Size = Fi + Fl + Pr

• C = b * Size

• Where b is an organization-dependent constant

The metric was never updated to include databases

712

Size: Function Points

Based on the number of

• inputs (Inp)

• outputs (Out)

• inquiries (Inq)

• master files (Maf)

• and interfaces (Inf)

Rough approximation of size is calculated by FP =

• (4 * Inp) + (5 * Out) + (4 * Inq) + (10 * Maf) + (7 * Inf)

Can be more accurate than LOC (why?)

As with previous size metrics, can be inaccurate depending on

design phase
713

ISO/IEC 15939

An international standard defining the software

measurement process

Published in 2002

Covers these topics

• Measurement activities

• Required information

• Application of measurement analysis results

• Determining validity of analysis results

Can be used by both developers and clients

714

Tenets of Documentation

“If you didn’t write it down, it didn’t happen”

“If it wasn’t recorded, it can’t be measured”

“If it wasn’t measured, it can’t be controlled”

Successful software engineers discipline themselves to

document their work

• Record your research

• Record your thoughts when weighing design options

• Record your rationale

• Record your effort

715

Process Metrics for Your Team

Per team member

• Total hours

• Hours per week

• LOC per week

• Defects identified

Per week

• LOC per subsystem

Per subsystem

• Changes in complexity

• Defects found/corrected

716

References

“Software Metrics”, EvelandE. Mills,

http://www.sei.cmu.edu/publications/documents/cms/cm.012.html

“Software Engineering”, Stephen R. Schach

“A Software Metrics Primer”, Karl E. Wiegers,

http://www.processimpact.com/articles/metrics_primer.html

717

Complexity Metrics

There are many!

As with previous metrics, some are better suited for

• A particular design phase

• A particular programming language/paradigm

Examples

• Software Science [Halstead]

• Cyclomatic [McCabe]

• Fan-in / Fan-out [Henry and Kafura]

• Object-oriented [Morris]

718

Halstead’s Software Science

Attempts to estimate programming effort

Classifies program tokens as operators and operands

Counts these attributes

• n1= the number of distinct operators

• n2= the number of distinct operands

• N1= the total number of operators

• N2= the total number of operands

719

Halstead Complexity Metrics

Program length

• N= N1+ N2

Program vocabulary

• n= n1+ n2

Volume

• V= N * (log2n)

Difficulty

• D= (n1/2) * (N2/n2)

Effort

• E= D * V

720

Example: Halstead

721

N1 = 29; N2 = 13

n1 = 13; n2 = 5

N = 42; n = 18

V = 42 log218 = 176.4

D = (13/2)(13/5) = 16.9

E = (16.9)(176.4) =

2981.16

void foo (int k, int x) {

 if (k < 3) {

 if (k < 1) {

 x = x * x;

 } else {

 x = x * k;

 }

 }

}

Halstead Metrics

Some debate over their validity

Advantages

• Does not require in-depth analysis of program structure

• Predicts maintenance effort

• Simple to calculate/automate

Disadvantages

• Depends of completed code

722

McCabe’s Cyclomatic
Complexity

Measures complexity based on program structure

Partitions program into nodes and edges

Cyclomatic complexity

• CC(G) = number(edges) -number(nodes) + 1

723

Examples: Cyclomatic

724

1 statement_a

2 statement_b

1 if (condition)

2 block_1

3 else

4 block_2

5

1 while (condition)

2 block_1

3

CC = 1 – 2 + 1 = 0 CC = 5 – 5 + 1 = 1 CC = 3 –3 + 1 = 1

1

2

1

2

3

4

5

1

2

3

Cyclomatic Metrics

Advantages

• Good maintenance predictor

• Can be used in design phase to compare options

• Applicable earlier than Halstead

Disadvantages

• Measures control complexity, not data complexity

• Same weight placed on nested and non-nested loops

• Many simple comparison and decision structures may produce

a misleading figure

725

