
Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 11: 

Managing the Software Process

Lecture 13

651

11.1 What is Project Management? 

Project management encompasses all the activities needed to 

plan and execute a project: 

• Deciding what needs to be done 

• Estimating costs 

• Ensuring there are suitable people to undertake the project

• Defining responsibilities 

• Scheduling 

• Making arrangements for the work 

• continued ...



• Directing 

• Being a technical leader 

• Reviewing and approving decisions made by others 

• Building morale and supporting staff 

• Monitoring and controlling 

• Co-ordinating the work with managers of other projects 

• Reporting 

• Continually striving to improve the process 

652

 What is Project Management?

653

11.2 Software Process Models 

Software process models are general approaches for 

organizing a project into activities. 

• Help the project manager and his or her team to decide:

—What work should be done;

—In what sequence to perform the work. 

• The models should be seen as aids to thinking, not rigid 

prescriptions of the way to do things. 

• Each project ends up with its own unique plan. 



654

The opportunistic approach

655

The opportunistic approach

… is what occurs when an organization does not follow  good 
engineering practices.

• It does not acknowledge the importance of working out the 
requirements and the design before implementing a system. 

• The design of software deteriorates faster if it is not well 
designed. 

• Since there are no plans, there is nothing to aim towards. 

• There is no explicit recognition of the need for systematic 
testing and other forms of quality assurance. 

• The above problems make the cost of developing and 
maintaining software very high. 



656

The waterfall model

657

The waterfall model

The classic way of looking at S.E. that accounts for the 

importance of requirements, design and quality assurance.

• The model suggests that software engineers should work in

a series of stages. 

• Before completing each stage, they should perform quality 

assurance (verification and validation). 

• The waterfall model also recognizes, to a limited extent, 

that you sometimes have to step back to earlier stages.



658

Limitations of the waterfall model

• The model implies that you should attempt to complete a 

given stage before moving on to the next stage

—Does not account for the fact that requirements constantly 

change. 

—It also means that customers can not use anything until the 

entire system is complete. 

• The model makes no allowances for prototyping.

• It implies that you can get the requirements right by simply 

writing them down and reviewing them. 

• The model implies that once the product is finished, 

everything else is maintenance. 

659

The phased-release model



660

The phased-release model

It introduces the notion of incremental development. 

• After requirements gathering and planning, the project should 

be broken into separate subprojects, or phases. 

• Each phase can be released to customers when ready. 

• Parts of the system will be available earlier than when using a 

strict waterfall approach. 

• However, it continues to suggest that all requirements be 

finalized at the start of development. 

661

The spiral model



662

The spiral model

It explicitly embraces prototyping and an iterative approach 

to software development. 

• Start by developing a small prototype.

• Followed by a mini-waterfall process, primarily to gather 

requirements. 

• Then, the first prototype is reviewed.

• In subsequent loops, the project team performs further 

requirements, design, implementation and review.

• The first thing to do before embarking on each new loop is 

risk analysis.

• Maintenance is simply a type of on-going development.  

663

The evolutionary model



664

The evolutionary model

It shows software development as a series of hills, each 

representing a separate loop of the spiral.

• Shows that loops, or releases, tend to overlap each other.

• Makes it clear that development work tends to reach a peak, at 

around the time of the deadline for completion. 

• Shows that each prototype or release can take 

—different amounts of time to deliver; 

—differing amounts of effort.

665

The concurrent engineering model  



666

The concurrent engineering model

It explicitly accounts for the divide and conquer principle. 

• Each team works on its own component, typically following a 

spiral or evolutionary approach.

• There has to be some initial planning, and periodic 

integration.   

667

The Rational Unified process

This is the most widely known methodology that embraces 

UML

• Designed to be adaptable

• Suggests a process framework

• Adapts to the project needs

• Use-case-driven development

• Architecture-centric process



668

Agile approaches

These approaches encourage the development of particularly small 
iterations

• Well suited for small projects that involve uncertain, changing 
requirements and other high risk

• The most famous agile technique is eXtreme Programming (XP)

—All stakeholders work closely together

—User stories are written instead of requirement document

—There must be a series of small and frequent releases (1 to 3 weeks)

—The project variable are: scope, resources and time (and quality)

—Test cases are written before the software is developed

—A large amount of refactoring is encouraged

—Pair programming is recommended

669

Choosing a process model

• From the waterfall model:

—Incorporate the notion of stages.

• From the phased-release model: 

—Incorporate the notion of doing some initial high-level analysis, 

and then dividing the project into releases. 

• From the spiral model:

—Incorporate prototyping and risk analysis.

• From the evolutionary model:

—Incorporate the notion of varying amounts of time and work, with 

overlapping releases. 

• From concurrent engineering:

—Incorporate the notion of breaking the system down into 

components and developing them in parallel. 



670

Reengineering

Periodically project managers should set aside some time to 

re-engineer part or all of the system 

• The extent of this work can vary considerably: 

—Cleaning up the code to make it more readable. 

—Completely replacing a layer.

—Re-factoring part of the design. 

• In general, the objective of a re-engineering activity is to 

increase maintainability. 

671

11.3 Cost estimation

To estimate how much software-engineering time will be 

required to do some work.

• Elapsed time

—The difference in time from the start date to the end 

date of a task or project. 

• Development effort

—The amount of labour used in person-months or 

person-days.

—To convert an estimate of development effort to an 

amount of money:

   You multiply it by the weighted average cost (burdened 

cost) of employing a software engineer for a month (or a 

day). 



672

Principles of effective cost estimation

Principle 1: Divide and conquer.

• To make a better estimate, you should divide the project up 

into individual subsystems.

• Then divide each subsystem further into the activities that will 

be required to develop it. 

• Next, you make a series of detailed estimates for each 

individual activity.

• And sum the results to arrive at the grand total estimate for the 

project. 

673

Principles of effective cost estimation

Principle 2: Include all activities when making estimates. 

• The time required for all development activities must be taken 

into account.

• Including:

- Prototyping

- Design

- Inspecting

- Testing

- Debugging

- Writing user documentation

- Deployment. 



674

Principles of effective cost estimation

Principle 3: Base your estimates on past experience 
combined with knowledge of the current project. 

• If you are developing a project that has many similarities 
with a past project:

— You can expect it to take a similar amount of work. 

• Base your estimates on the personal judgement of your 
experts

or

• Use algorithmic models developed in the software industry 
as a whole by analyzing a wide range of projects. 

—They take into account various aspects of a project’s 
size and complexity, and provide formulas to compute 
anticipated cost.  

675

Algorithmic models

Allow you to systematically estimate development effort. 

• Based on an estimate of some other factor that you can 

measure, or that is easier to estimate: 

—The number of use cases

—The number of distinct requirements

—The number of classes in the domain model

—The number of widgets in the prototype user interface

—An estimate of the number of lines of code



676

Algorithmic models

• A typical algorithmic model uses a formula like the following: 

—COCOMO:

—Functions Points:

E = a + bNc

S = W
1
F

1
 + W

2
F

2
 +W

3
F

3
 + …

677

Principles of effective cost estimation

Principle 4: Be sure to account for differences when 

extrapolating from other projects. 

• Different software developers

• Different development processes and maturity levels

• Different types of customers and users

• Different schedule demands

• Different technology

• Different technical complexity of the requirements

• Different domains

• Different levels of requirement stability



678

Principles of effective cost estimation

Principle 5: Anticipate the worst case and plan for 
contingencies. 

• Develop the most critical use cases first

—If the project runs into difficulty, then the critical features 
are more likely to have been completed

• Make three estimates:

—Optimistic (O)
- Imagining everything going perfectly

—Likely (L)
- Allowing for typical things going wrong

—Pessimistic (P)
- Accounting for everything that could go wring 

679

Principles of effective cost estimation

Principle 6: Combine multiple independent estimates.

• Use several different techniques and compare the results. 

• If there are discrepancies, analyze your calculations to 
discover what factors are causing the differences.

• Use the Delphi technique. 

—Several individuals initially make cost estimates in 
private. 

—They then share their estimates to discover the 
discrepancies. 

—Each individual repeatedly adjusts his or her estimates 
until a consensus is reached.   



680

Principles of effective cost estimation

Principle 7: Revise and refine estimates as work progresses 

• As you add detail. 

• As the requirements change.

• As the risk management process uncovers problems.

681

Building Software Engineering Teams 

Software engineering is a human process. 

• Choosing appropriate people for a team, and assigning roles 

and responsibilities to the team members, is therefore an 

important project management skill 

• Software engineering teams can be organized in many 

different ways 



682

Software engineering teams

Egoless team:

• In such a team everybody is equal, and the team works 

together to achieve a common goal. 

• Decisions are made by consensus. 

• Most suited to difficult projects with many technical 

challenges. 

683

Software engineering teams

Hierarchical manager-subordinate structure:

• Each individual reports to a manager and is responsible for 

performing the tasks delegated by that manager.

• Suitable for large projects with a strict schedule where 

everybody is well-trained and has a well-defined role. 

• However, since everybody is only responsible for their own 

work, problems may go unnoticed.  



684

Software engineering teams

Chief programmer team:

• Midway between egoless and hierarchical. 

• The chief programmer leads and guides the project.

• He or she consults with, and relies on, individual specialists. 

685

Choosing an effective size for a team

• For a given estimated development effort, in person months, 

there is an optimal team size. 

—Doubling the size of a team will not halve the 

development time. 

• Subsystems and teams should be sized such that the total 

amount of required knowledge and exchange of information is 

reduced. 

• For a given project or project iteration, the number of people 

on a team will not be constant. 

• You can not generally add people if you get behind schedule, 

in the hope of catching up. 



686

Skills needed on a team

• Architect

• Project manager

• Configuration management and build specialist

• User interface specialist

• Technology specialist

• Hardware and third-party software specialist

• User documentation specialist

• Tester

687

11.5 Project Scheduling and Tracking 

• Scheduling is the process of deciding:

—In what sequence a set of activities will be performed.

—When they should start and be completed. 

• Tracking is the process of determining how well you are 

sticking to the cost estimate and schedule. 



688

PERT charts

A PERT chart shows the sequence in which tasks must be 

completed. 

• In each node of a PERT chart, you typically show the elapsed 

time and effort estimates. 

• The critical path indicates the minimum time in which it is 

possible to complete the project. 

689

Example of a PERT chart



690

Gantt charts

A Gantt chart is used to graphically present the start and end 

dates of each software engineering task 

• One axis shows time.

• The other axis shows the activities that will be performed.

• The black bars are the top-level tasks. 

• The white bars are subtasks

• The diamonds are milestones:

—Important deadline dates, at which specific events may 

occur  

691

Example of a Gantt chart



692

Earned value

• Earned value is the amount of work completed, measured 

according to the  budgeted effort that the work was supposed 

to consume. 

• It is also called the budgeted cost of work performed. 

• As each task is completed, the number of person-months 

originally planned for that task is added to the earned value of 

the project. 

693

Earned value charts

An earned value chart has three curves:

• The budgeted cost of the work scheduled.

• The earned value.

• The actual cost of the work performed so far.



694

Example of an earned value chart

695

11.6 Contents of a Project Plan 

A. Purpose

B. Background information

C. Processes to be used

D. Subsystems and planned releases

E. Risks and challenges

F. Tasks

G. Cost estimates

H. Team

I. Schedule and milestones



696

Difficulties and Risks in Project Management

• Accurately estimating costs is a constant challenge

—Follow the cost estimation guidelines.  

• It is very difficult to measure progress and meet deadlines 

—Improve your cost estimation skills so as to account for the 
kinds of problems that may occur. 

—Develop a closer relationship with other members of the team. 

—Be realistic in initial requirements gathering, and follow an 
iterative approach. 

—Use earned value charts to monitor progress. 

• It is difficult to deal with lack of human resources or 

technology needed to successfully run a project 

—When determining the requirements and the project plan, take 

into consideration the resources available. If you cannot find 

skilled people then limit the scope of your project. 

697

Difficulties and Risks in Project Management

• Communicating effectively in a large project is hard 

—Take courses in communication, both written and oral. 

—Learn how to run effective meetings. 

—Review what information everybody should have, and 

make sure they have it. 

—Make sure that project information is readily available.

—Use ‘groupware’ technology to help people exchange the 

information they need to know 



698

Difficulties and Risks in Project Management

• It is hard to obtain agreement and commitment from 

others 

—Take courses in negotiating skills and leadership. 

—Ensure that everybody understands 

- The position of everybody else. 

- The costs and benefits of each alternative.

- The rationale behind any compromises. 

—Ensure that everybody’s proposed responsibility is clearly 

expressed. 

—Listen to everybody’s opinion, but take assertive action, 

when needed, to ensure progress occurs. 


