
Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 8:

Modelling Interactions and Behaviour

Lecture 11

546

8.1 Interaction Diagrams

Interaction diagrams are used to model the dynamic aspects

of a software system

• They help you to visualize how the system runs.

• An interaction diagram is often built from a use case and a

class diagram.

—The objective is to show how a set of objects accomplish

the required interactions with an actor.

547

Interactions and messages

• Interaction diagrams show how a set of actors and objects

communicate with each other to perform:

—The steps of a use case, or

—The steps of some other piece of functionality.

• The set of steps, taken together, is called an interaction.

• Interaction diagrams can show several different types of

communication.

—E.g. method calls, messages send over the network

—These are all referred to as messages.

548

Elements found in interaction diagrams

• Instances of classes

—Shown as boxes with the class and object identifier

underlined

• Actors

—Use the stick-person symbol as in use case diagrams

• Messages

—Shown as arrows from actor to object, or from object to

object

549

Creating interaction diagrams

You should develop a class diagram and a use case model

before starting to create an interaction diagram.

• There are two kinds of interaction diagrams:

—Sequence diagrams

—Communication diagrams

550

Sequence diagrams – an example

551

Sequence diagrams

A sequence diagram shows the sequence of messages exchanged by the set

of objects performing a certain task

• The objects are arranged horizontally across the diagram.

• An actor that initiates the interaction is often shown on the left.

• The vertical dimension represents time.

• A vertical line, called a lifeline, is attached to each object or actor.

• The lifeline becomes a broad box, called an activation box during the live

activation period.

• A message is represented as an arrow between activation boxes of the

sender and receiver.

—A message is labelled and can have an argument list and a return

value.

552

Sequence diagrams –
 same example, more details

553

Sequence diagrams –
 an example with replicated messages

• An iteration over objects is indicated by an asterisk preceding the

message name

554

Sequence diagrams –
 an example with object deletion

• If an object’s life ends, this is shown with an X at the end of the lifeline

555

Communication diagrams – an example

556

Communication diagrams

Communication diagrams emphasize how the objects

collaborate in order to realize an interaction

• A communication diagram is a graph with the objects as the

vertices.

• Communication links are added between objects

• Messages are attached to these links.

—Shown as arrows labelled with the message name

• Time ordering is indicated by prefixing the message with

some numbering scheme.

557

Communication diagrams –
 same example, more details

558

Communication links

• A communication link can exist between two objects

whenever it is possible for one object to send a message to the

other one.

• Several situations can make this message exchange possible:

1. The classes of the two objects have an association

between them.

- This is the most common case.

- If all messages are sent in the same direction, then probably the

association can be made unidirectional.

559

Other communication links

2. The receiving object is stored in a local variable of

the sending method.

- This often happens when the object is created in the sending

method or when some computation returns an object .

- The stereotype to be used is «local» or [L].

3. A reference to the receiving object has been received

as a parameter of the sending method.

- The stereotype is «parameter» or [P].

560

Other communication links

4. The receiving object is global.

- This is the case when a reference to an object can be obtained

using a static method.

- The stereotype «global», or a [G] symbol is used in this case.

5. The objects communicate over a network.

- We suggest to write «network».

561

How to choose between using a sequence
or communication diagram

Sequence diagrams

• Make explicit the time ordering of the interaction.

—Use cases make time ordering explicit too

—So sequence diagrams are a natural choice when you build

an interaction model from a use case.

• Make it easy to add details to messages.

—Communication diagrams have less space for this

562

How to choose between using a sequence
or communication diagram

Communication diagrams

• Can be seen as a projection of the class diagram

—Might be preferred when you are deriving an interaction

diagram from a class diagram.

—Are also useful for validating class diagrams.

563

Communication diagrams and patterns

A communication diagram can be used to represent aspects of a design

pattern

564

8.2 State Diagrams

A state diagram describes the behaviour of a system, some

part of a system, or an individual object.

• At any given point in time, the system or object is in a certain

state.

—Being in a state means that it will behave in a specific way

in response to any events that occur.

• Some events will cause the system to change state.

—In the new state, the system will behave in a different way

to events.

• A state diagram is a directed graph where the nodes are states

and the arcs are transitions.

565

State diagrams – an example

• tic-tac-toe game (also called noughts and crosses)

566

States

• At any given point in time, the system is in one state.

• It will remain in this state until an event occurs that causes it

to change state.

• A state is represented by a rounded rectangle containing the

name of the state.

• Special states:

—A black circle represents the start state

—A circle with a ring around it represents an end state

567

Transitions

• A transition represents a change of state in response to an

event.

—It is considered to occur instantaneously.

• The label on each transition is the event that causes the change

of state.

568

State diagrams – an example of transitions
with time-outs and conditions

569

State diagrams – an example with
conditional transitions

570

Activities in state diagrams

• An activity is something that takes place while the system is in

a state.

—It takes a period of time.

—The system may take a transition out of the state in

response to completion of the activity,

—Some other outgoing transition may result in:

- The interruption of the activity, and

- An early exit from the state.

571

State diagram – an example with activity

572

Actions in state diagrams

• An action is something that takes place effectively

instantaneously

—When a particular transition is taken,

—Upon entry into a particular state, or

—Upon exit from a particular state

• An action should consume no noticeable amount of time

573

State diagram – an example with actions

574

State diagrams – another example

575

Nested substates and guard conditions

A state diagram can be nested inside a state.

• The states of the inner diagram are called substates.

576

State diagram – an example with substates

577

8.3 Activity Diagrams

• An activity diagram is like a state diagram.

—Except most transitions are caused by internal events, such as the

completion of a computation.

• An activity diagram

—Can be used to understand the flow of work that an object or

component performs.

—Can also be used to visualize the interrelation and interaction between

different use cases.

—Is most often associated with several classes.

• One of the strengths of activity diagrams is the representation of

concurrent activities.

578

Activity diagrams – an example

579

Representing concurrency

• Concurrency is shown using forks, joins and rendezvous.

—A fork has one incoming transition and multiple outgoing

transitions.

- The execution splits into two concurrent threads.

—A rendezvous has multiple incoming and multiple

outgoing transitions.

- Once all the incoming transitions occur all the outgoing

transitions may occur.

580

Representing concurrency

—A join has multiple incoming transitions and one outgoing

transition.

- The outgoing transition will be taken when all incoming

transitions have occurred.

- The incoming transitions must be triggered in separate threads.

- If one incoming transition occurs, a wait condition occurs at the

join until the other transitions occur.

581

Swimlanes

Activity diagrams are most often associated with several

classes.

• The partition of activities among the existing classes can be

explicitly shown using swimlanes.

582

Activity diagrams – an example with
swimlanes

583

8.4 Implementing Classes Based on
Interaction and State Diagrams

• You should use these diagrams for the parts of your system
that you find most complex.

—I.e. not for every class

• Interaction, activity and state diagrams help you create a
correct implementation.

• This is particularly true when behaviour is distributed across
several use cases.

—E.g. a state diagram is useful when different conditions
cause instances to respond differently to the same event.

585

Example: The CourseSection class

States:

• ‘Planned’:

closedOrCancelled == false && open == false

• ‘Cancelled’:

closedOrCancelled == true &&

 registrationList.size() == 0

• ‘Closed’ (course section is too full, or being taught):

closedOrCancelled == true &&

! registrationList.size() > 0

586

Example: The CourseSection class

States:

• ‘Open’ (accepting registrations):

open == true

• ‘NotEnoughStudents’ (substate of ‘Open’):

open == true &&

! ! registrationList.size() < course.getMinimum()

• ‘EnoughStudents’ (substate of ‘Open’):

open == true &&

! ! registrationList.size() >= course.getMinimum()

587

Example: The CourseSection class

public class CourseSection
{
 // The many-1 abstraction-occurrence association (Figure 8.2)
 private Course course;

 // The 1-many association to class Registration (Figure 8.2)
 private List<Registration> registrationList;

 // The following are present only to determine the state
 // (as in Figure 8.19). The initial state is 'Planned‘
 private boolean open = false;
 private boolean closedOrCanceled = false;

588

Example: The CourseSection class

public CourseSection(Course course)

{

 this.course = course;

 registrationList = new LinkedList<Registration>();

}

public void openRegistration()

{

 if(!closedOrCanceled) // must be in 'Planned' state

 {

 open = true; // to 'OpenNotEnoughStudents' state

 }

}

"

"

589

Example: The CourseSection class

public void closeRegistration()

{

 // to 'Canceled' or 'Closed' state

 open = false;

 closedOrCanceled = true;

 if (registrationList.size() < course.getMinimum())

 {

 unregisterStudents(); // to 'Canceled' state

 }

}

public void cancel()

{

 // to 'Canceled' state

 open = false;

 closedOrCanceled = true;

 unregisterStudents();

}

590

Example: The CourseSection class

public void requestToRegister(Student student)
{
 if (open) // must be in one of the two 'Open' states
 {
 // The interaction specified in the sequence diagram of Figure 8.4
 Course prereq = course.getPrerequisite();
 if (student.hasPassedCourse(prereq))
 {
 // Indirectly calls addToRegistrationList
 new Registration(this, student);
 }
 // Check for automatic transition to 'Closed' state
 if (registrationList.size() >= course.getMaximum())
 {
 // to 'Closed' state
 open = false;
 closedOrCanceled = true;
 }
 }
}

"

591

Example: The CourseSection class

 // Private method to remove all registrations
 // Activity associated with 'Canceled' state.
 private void unregisterStudents()
 {
 for(Registration next : registrationList)
 {
 next.unregisterStudent();
 registrationList.remove(next);
 }
 }
 // Called within this package only, by the constructor of
 // Registration to ensure the link is bi-directional
 void addToRegistrationList(Registration newRegistration)
 {
 registrationList.add(newRegistration);
 }
}

592

8.5 Difficulties and Risks in Modelling
Interactions and Behaviour

Dynamic modelling is a difficult skill

• In a large system there are a very large number of possible paths a system

can take.

• It is hard to choose the classes to which to allocate each behaviour:

—Ensure that skilled developers lead the process, and ensure that all

aspects of your models are properly reviewed.

—Work iteratively:

- Develop initial class diagrams, use cases, responsibilities, interaction

diagrams and state diagrams;

- Then go back and verify that all of these are consistent, modifying them as

necessary.

—Drawing different diagrams that capture related, but distinct,

information will often highlight problems.

