
Object-Oriented Software Engineering
Practical Software Development using UML and Java

Chapter 7:

Focusing on Users and Their Tasks

Lecture 10

520

7.1 User Centered Design

Software development should focus on the needs of users

• Understand your users

• Design software based on an understanding of the users’ tasks

• Ensure users are involved in decision making processes

• Design the user interface following guidelines for good

usability

• Have users work with and give their feedback about

prototypes, on-line help and draft user manuals

521

The importance of focusing on users

• Reduced training and support costs

• Reduced time to learn the system

• Greater efficiency of use

• Reduced costs by only developing features that are needed

• Reduced costs associated with changing the system later

• Better prioritizing of work for iterative development

• Greater attractiveness of the system, so users will be more

willing to buy and use it

522

7.2 Characteristics of Users

Software engineers must develop an understanding of the

users

• Goals for using the system

• Potential patterns of use

• Demographics

• Knowledge of the domain and of computers

• Physical ability

• Psychological traits and emotional feelings

523

7.3 Basics of User Interface Design

• User interface design should be done in conjunction with

other software engineering activities.

• Do use case analysis to help define the tasks that the UI must

help the user perform.

• Do iterative UI prototyping to address the use cases.

• Results of prototyping will enable you to finalize the

requirements.

524

Usability vs. Utility

Does the system provide the raw capabilities to allow the user

to achieve their goal?

• This is utility.

Does the system allow the user to learn and to use the raw

capabilities easily?

• This is usability.

Both utility and usability are essential

• They must be measured in the context of particular types of

users.

525

Aspects of usability

Usability can be divided into separate aspects:

• Learnability

—The speed with which a new user can become proficient
with the system.

• Efficiency of use

—How fast an expert user can do their work.

• Error handling

—The extent to which it prevents the user from making
errors, detects errors, and helps to correct errors.

• Acceptability.

—The extent to which users like the system.

526

Different learning curves

527

Some basic terminology of user interface
design

• Dialog: A specific window with which a user can interact, but which is not
the main UI window.

• Control or Widget: Specific components of a user interface.

• Affordance: The set of operations that the user can do at any given point
in time.

• State: At any stage in the dialog, the system is displaying certain
information in certain widgets, and has a certain affordance.

• Mode: A situation in which the UI restricts what the user can do.

• Modal dialog: A dialog in which the system is in a very restrictive mode.

• Feedback: The response from the system whenever the user does
something, is called feedback.

• Encoding techniques. Ways of encoding information so as to
communicate it to the user.

528

7.4 Usability Principles

1. Do not rely only on usability guidelines – always test with users.

• Usability guidelines have exceptions; you can only be confident that a UI

is good if you test it successfully with users.

2: Base UI designs on users’ tasks.

• Perform use case analysis to structure the UI.

3: Ensure that the sequences of actions to achieve a task are as simple as

possible.

• Reduce the amount of reading and manipulation the user has to do.

• Ensure the user does not have to navigate anywhere to do subsequent steps

of a task.

529

Usability Principles

4: Ensure that the user always knows what he or she can and

should do next.

• Ensure that the user can see what commands are available and

are not available.

• Make the most important commands stand out.

5: Provide good feedback including effective error messages.

• Inform users of the progress of operations and of their

location as they navigate.

• When something goes wrong explain the situation in adequate

detail and help the user to resolve the problem.

530

Usability Principles

6: Ensure that the user can always get out, go back or undo
an action.

• Ensure that all operations can be undone.

• Ensure it is easy to navigate back to where the user came
from.

7: Ensure that response time is adequate.

• Users are very sensitive to slow response time

—They compare your system to others.

• Keep response time less than a second for most operations.

• Warn users of longer delays and inform them of progress.

531

Usability Principles

8: Use understandable encoding techniques.

• Choose encoding techniques with care.

• Use labels to ensure all encoding techniques are fully

understood by users.

 9: Ensure that the UI’s appearance is uncluttered.

• Avoid displaying too much information.

• Organize the information effectively.

532

Usability Principles

10: Consider the needs of different groups of users.

• Accommodate people from different locales and people with

disabilities.

• Ensure that the system is usable by both beginners and

experts.

11: Provide all necessary help.

• Organize help well.

• Integrate help with the application.

• Ensure that the help is accurate.

533

Usability Principles

12. Be consistent.

• Use similar layouts and graphic designs throughout your

application.

• Follow look-and-feel standards.

• Consider mimicking other applications.

534

Some encoding techniques

• Text and fonts

• Icons

• Photographs

• Diagrams and abstract graphics

• Colors

• Grouping and bordering

• Spoken words

• Music

• Other sounds

• Animations and video

• Flashing

535

Example
 (bad UI)

536

Example
 (better UI)

537

7.5 Evaluating User Interfaces

Heuristic evaluation

1. Pick some use cases to evaluate.

2. For each window, page or dialog that appears during the
execution of the use case

—Study it in detail to look for possible usability defects.

3. When you discover a usability defect write down the
following information:

—A short description of the defect.

—Your ideas for how the defect might be fixed.

538

Evaluating User Interfaces

Evaluation by observation of users

• Select users corresponding to each of the most important
actors

• Select the most important use cases

• Write sufficient instructions about each of the scenarios

• Arrange evaluation sessions with users

• Explain the purpose of the evaluation

• Preferably videotape each session

• Converse with the users as they are performing the tasks

• When the users finish all the tasks, de-brief them

• Take note of any difficulties experienced by the users

• Formulate recommended changes

539

7.6 Implementing a Simple GUI in Java

The Abstract Window Toolkit (AWT)

• Component: the basic building blocks of any graphical

interface.

— Button, TextField, List, Label, ScrollBar.

• Container: contain the components constituting the GUI

— Frame, Dialog and Panel

• LayoutManager: define the way components are laid out in a

container.

— GridLayout, BorderLayout

540

Example

public class ClientGUI extends Frame implements ChatIF
{
 private Button closeB = new Button("Close");
 private Button openB = new Button("Open");
 private Button sendB = new Button("Send");
 private Button quitB = new Button("Quit");
 private TextField portTxF = new TextField("12345");
 private TextField hostTxF = new TextField("localhost");
 private TextField message = new TextField();
 private Label portLB = new Label("Port: ", Label.RIGHT);
 private Label hostLB = new Label("Host: ", Label.RIGHT);
 private Label messageLB = new Label("Message: ",
Label.RIGHT);
 private List messageList = new List();
 ...

}

541

Example
public ClientGUI(String host, int port)
{
 super("Simple Chat");
 setSize(300,400);
 setVisible(true);
 setLayout(new BorderLayout(5,5));
 Panel bottom = new Panel();
 add("Center", messageList);
 add("South", bottom);
 bottom.setLayout(new GridLayout(5,2,5,5))
 bottom.add(hostLB);
 bottom.add(hostTxF);
 bottom.add(portLB);
 bottom.add(portTxF);
 bottom.add(messageLB);
 bottom.add(message);
 bottom.add(openB);
 bottom.add(sendB);
 bottom.add(closeB);
 bottom.add(quitB);
 ...
}

542

Example

sendB.addActionListener(new ActionListener()
{
 public void actionPerformed(ActionEvent e)
 {
 send();
 }
});

public void send()
{
 try
 {
 client.sendToServer(message.getText());
 }
 catch (Exception ex)
 {
 messageList.add(ex.toString());
 messageList.makeVisible(messageList.getItemCount()-1);
 messageList.setBackground(Color.yellow);
 }
}

543

7.7 Difficulties and Risks in UI Design

• Users differ widely

—Account for differences among users when you design the
system.

—Design it for internationalization.

—When you perform usability studies, try the system with
many different types of users.

• User interface implementation technology changes rapidly

—Stick to simpler UI frameworks widely used by others.

—Avoid fancy and unusual UI designs involving specialized
controls that will be hard to change.

544

Difficulties and Risks in UI Design

• User interface design and implementation can often take
the majority of work in an application:

—Make UI design an integral part of the software
engineering process.

—Allocate time for many iterations of prototyping and
evaluation.

• Developers often underestimate the weaknesses of a GUI

—Ensure all software engineers have training in UI
development.

—Always test with users.

—Study the UIs of other software.

