
CS307 Software Engineering PA1

BitVector

Overview

The goal of the first project is to implement a robust and configurable bit vector
in Java 1.2. A BitVector maps integers in the active range of the vector to
boolean values. A typical use for the class is to set a bit and to test for an
individual bit. Bit vectors have a rich set of logical operations on pairs of
vectors that include and, or, and xor.

The goal of this assignment is first and foremost to develop a correct im-
plementation, but efficiency concerns can not be ignored as bit vectors may be
used within efficiency critical portions of client programs.

Context

Although you are to implement a BitVector that is correct in all situations your
clients are working on a project that has particular requirements and which are
described in the two following use cases. You must strive to optimize your
implementation for those cases.

Small-sets This scenario is concerned with small bits vectors for which the
test, or and and methods are speed critical. Furthermore, the size of
data structures has to minimized. In the small-set scenario, expect large
numbers of vectors (thousands) with ranges from 0 to 127.

Big-sets This scenario has a number of large, sparse, bit vectors being used
mostly for their set and test methods. In this scenario a space efficient
representation of large vectors and speed of tests are critical. All other
operations are used rather infrequently.

Example of applications of BitVectors include prime sieves and garbage col-
lection (GC). In a GC one may represent a map of the memory by a bit vector
to describe which objects are live and which ones are not (note that this is a
gross simplification – we will see a more realistic representation later).

The BitVector interface is sufficiently general to allow for multiple imple-
mentations which can be optimized for the various uses of bit vectors. As a
library implementer, you have to hide the complexity of these implementation
behind a simple interface. You should approach this assignment as a software
engineering task in which you have to produce robust and correct software. In
particular, you should test your code thoroughly under the assumption that
clients may execute arbitrary sequences of invocations of the methods exported
in the interface. Your implementation must catch all errors and fail gracefully.

For simplicity, you can assume that client code is properly synchronized, in
other words you don’t need to be concerned about concurrency.

1



Interface Details

You are given the following interfaces in lieu of a specification:

• BitVector – represents one bit vector object.

• Builder – creates bit vectors of a particular kind.

• Director – creates a builder from a descriptor.

• Descriptor – specifies the requirements placed on a bit vector, these require-

ments include the active range, as well as some efficiency settings.

With the exception of BitVector.Descriptor all of the above are interfaces.
Figure 1 illustrates some of the relationships between interfaces with a UML
diagram. The Java code is contained in the two files BitVector.java and
Director.java. This code uses inner interfaces to emphasize coupling be-
tween interfaces. Director has two inner interfaces Director.Builder and
Director.Descriptorwhich stand for generic builders and descriptors. BitVector
specializes the Builder interface and provides a concrete implementation for the
Descriptor.

<<Interface>>

Iterator
+hasNext(): boolean
+getNext(): boolean
+position(): int
+skipToSet(): int
+skipToUnset(): int

<<Interface>>

BitVector
+test(index: int): boolean
+set(index: int): boolean
+unset(index: int): boolean
+negate(index: int): boolean
+or(bs: BitVector): void
+xor(bs: BitVector): void
+copy(): BitVector
+iterator(): Iterator
+builder(): Director_Builder
+toString(): String

<<Interface>>

BitVector_Builder
+buildBitVector(): BitVector
+buildBitVector(val: BitVector): BitVector

BitVector_Descriptor

-final optSpace_: boolean
-final optSpeed_: boolean
-final low_: int
-final high_: int
-final checked_: boolean

+BitVector_Descriptor(low: int, high: int): void
+BitVector_Descriptor(): void
optSpeed(boolean: int, checked: boolean): void
+optimizeSpace(): boolean
+optimizeSpeed(): boolean
+getLowerBound(): int
+getUpperBound(): int
+boundCheckRequired(): boolean
+getDescription(): String
+and(bs: BitVector): void

<<Interface>>

Director
+makeBuilder(dd: ): Director_Builder

<<Interface>>

Director_Builder
+build(): Object

<<Interface>>

Director_Descriptor
+getDescription(): String

Figure 1: Class diagram for the PA1

To leave many customization opportunities open, we use the Builder pattern
[GoF] for creating bit vectors. A simple example of the process is shown below,
we assume that MyDirector is a class which implements the Director interface.
First, we must perform some initialization. In an application that uses vectors
of a single size this work can be done once and for all in global variables.

// Create one instance of a director.

static final Director director = new MyDirector();

// Create a descriptor for small and compact

// bit vectors with bound checks enabled.

static final BitVector.Descriptor small

= new BitVector.Descriptor(0, 31, false, true, true);

// Create a builder

static final BitVector.Builder builder

= (BitVector.Builder) director.make(small);

2



Once this set up work is done all the code can simply use the builder field to
construct new bit vectors:

void method(BitVector bv) {

BitVector bs = builder.build();

bs.set(15);

if (bs.test(i)) bv.or(bs);

The key customization step comes in when Director is given a descriptor.
At this step the director can choose a builder appropriate to the requirements
embodied by the descriptor or throw an exception if these requirements can
not be met. Potentially there can be many different classes which implement
the Builder and BitVector interfaces. The role of the director is to pick the
one most suited to the task at hand. Once an application is in possession of a
builder no more customization is required or possible, as the only thing that a
builder can do is to create new vectors.

Additional information along with code templates and complete JavaDoc
can be found on the course web page.

Grading

This assignment will be graded with respect to the following criteria in decreas-
ing order of importance: correctness, support for the use cases (i.e. optimized
implementations for speed and space), quality of code and documentation, de-
velopment log.

Requirements

For PA1 we expect you to turn in several Java classes. Please beware that you
follow the naming convention. Failing to do so may prevent our grading pro-
grams from processing your submission. All .java files in your assignment
should be named ClassName username.java where username is your login.
Thus BitVector jv.java is a valid name. There must at least be one file
named Director username.java containing a public class of the same name,
with a public constructor taking no arguments. All classes must be in the
cs307.first package.

The assignment due date is next Sunday at 23:59 pm. The code should be
submitted with ”turnin -c 307 -p pa1 filelist”. Please submit only the
java files in the first directory.

3


