
Automatic Service Composition
Dr. Donald Robinson

Northrop Grumman Corporation

CS307, Software Engineering (Spring 2009)
Video-conferences on Fridays

One of the inherent problems of service oriented computing is rapidly discovering

and composing multiple business services to accomplish some user-defined end goal. The
objective of this project is to create a modular program that will take a needed business
service and available information sources as an input, and then access a list of available
services and automatically determine which services must be composed to achieve the
needed task.

This problem is one that is commonly researched in the field of service oriented
architectures (SOA) but has corollaries in other domains. One such domain is in the
domain of tasking multiple military units in the execution of a mission. Each unit may
have a set of tasks that it is able to execute. A commander needs an automated way to
identify which assets need to be tasked, and how they should transfer their associated
information to execute the objective. For instance, a military unit may need to “take the
hill”. To do this, an intelligence function should be tasked to gather information about the
location of the enemy on the hill. Furthermore, this intelligence function may involve
tasking multiple information collection assets to gather the information. Additionally, the
intelligence that is gathered would need to be translated into a data format that an artillery
unit could use to shell a particular location. In the field of service oriented computing, the
common method used to expose a web service and the associated binding information is
the WSDL. In terms of registries of available tasks to accomplish a military mission,
UML documents are often used as well as a more formal database referred to as the
Unified Joint Task List (UJTL). Many other tools are available to expose services but
most will rely on some form of underlying XML format.

The desired program for this project should have several components. The first
should be a module that would capture the request from the user. In the simplest of forms,
this would specify completely the output parameters of the services that would be
composed in a SOA or the specific tasks that are available from the task lists. This
module might consist of a dynamically populated drop down menu of available outputs
from all of the services or might take a more generic text request from a user. We will
call this the request interface.

The second module of the program would contain a method for interfacing with
various databases containing lists of services. These services are likely to be contained in
multiple databases. This module should be designed so that another database can be
quickly added. For example, if one were searching through UDDI registries, then there
should be the ability to rapidly add another UDDI registry to the set of services that can
be queried. Similarly, if one is using a database of UML models describing candidate
services, then there should be a way to rapidly add new models that can be queried. We
will call this the service interface.

In reality the logic behind how these services can be combined might be
enormously complex. Ontologies are often used to not only translate the request into a

more computable set of requirements needed from the services, but also, are often used to
derive the particular information flows that must be present to successfully compose a set
of services or resources. Hence, the third module should be a reasoning mechanism
which should interact with the first 2 modules. This reasoning mechanism should be able
to take the request from the request interface, break it down into more distinct pieces,
iteratively use the service interface to query for and identify candidate services that can
be properly composed. We will call this the reasoning mechanism. The most basic
implementation of this reasoning mechanism might be to just take the set of specific
inputs and outputs specified in the request interface and query directly for them and
related ones in the service interface. An ontology of services is not necessary in this
implementation but could be added at a later time.

The last component of this program is the user interface. In the user interface,
there should be some form of authentication of a user. Once authenticated, the user
should be able to input the necessary data into the request interface and initiate the
composition request. Then the output of the reasoning mechanism, which is the list of
services as well as their associated information, should be displayed to the user. This
information should be presented so that at a quick glance a user can understand the
services that need to be composed, but can then optionally drill down to more specifics
about each service.

Besides the aforementioned modules, there are other constraints that must be put
on the system. The first is modularity. Composing services in a SOA has very different
details than composing capabilities available in UML models. The fundamentals are the
same, but the details are different. Hence the program must be developed so that if
someone develops a new request interface that is tailored to a specific data type, then it
can be easily replaced in the program. Similarly, as more sophisticated reasoning
mechanisms are developed, they should be easy to replace in the system.

One additional constraint is the computing time. In the case of mission execution
as mentioned previously, the time constraints are critical. A commander may have only a
matter of seconds to identify what resources are available and can be composed together
to accomplish his request. Thus, all efficiencies in extracting the necessary information
from the user as well as providing the end result should be explored.

It is assumed that the 4 modules of this project can be initially designed and
implemented in simple forms with additional capabilities and refinements being added as
time allows. Other elements to consider would be the transformations necessary and
available to translate outputs from one service into usable inputs from another service.
These transformations contribute to the overall information flow which is necessary.
Furthermore, some compositions will require services being executed in a particular
sequence. This must be conveyed to the user as well.

