Test Plan

Version 1.0 - 2008.10.24
Created 2008.10.14

Yahoo! Property View

Rob Shaw - Team Leader
Jacob McDorman - Project Leader
Robert Read - Technologist

Brad Van Dyk - Editor

Table of Contents

8 I L] e Yo L8 ot T o HR TSROSO RP PPN 1
I B T Yol U g 1T o A Yolo Yo T USSRt 1
A R T =T e [=Te I YU Lo LT=] Tl <SRRI 1
] I e T (=Tot fl T =T oYy T or= 1 o] o SRR UUSPRNE 1

[2] SOftware QUAlLY GOAISceeee ettt e e e e e e e e e st b e e e e e e e e s nstaaeeaeessaasssaeeeeeeeannsrranaaens 1
[2.1] OVEIVIEW..uuveeeeeeeeeiiteeee ettt e e e eeetae e e e e e e e tbbaeeeeeeeessbbaaeeaeeeeaassbaaaeeeseassbaaaeaseseassssssaasaees baaaaeeeans 1
[2.2] IVIBEIICS cvtteeeeee e ettt ettt e e e e eet e e e e e e ettt e e e e e e ee et aabaaeeeaeeeaassbaaesaeeesaassbaaesaeeeeasssssseese srrbrrneeeenann 2
[2.3] TOOIS oottt eee e e e et e et e e e e e e et bbaa e e e e e e e ea bt b——taeeeeaatabaaaaaeeeeaabares seerabrreaeeeeans 2

[3] TSN PrOCESSES. . uviieietieeeeetieeeeeteee e e itteeeeeteeeesatteeeeebteeesastaeeesasseeaeansasaesansasaesastasasanssaaesansesesanstanansns sesnes 3
TN O A =T RV (=1 2 RTRRPRORIN 3
[B.2] VEISION CONTIOL. ... iiiiiiiee ittt eeeetre et e e e e e eeba b e e e e e e eeetabaeeeeeeeessbraaaeeeeesanassbaaeeeeeesnsssrnes on 3
[3.3] COUB REVIBWS....cceietiieeeeeeeeeciiteee e e e e eeettreeeeeeeeeettbbeeeeeeeesetbrabaeaeeeeaabsbaseeeseeaassssaaaeseeesanssssaaeeeseennssss senen 3
[3.4] Other TEST PrOCESSES vuvvviieiiieetiriiieeeeeeiiirreeeeeeeeeeitreeeeeeeeesatareeeeeeeeesssbseseeseeesssstasesseeesesssteseeesessansssses 4

2 I =) 0= = 4
0 O T A =T SO 1Y =Y 4

0 0 T T o =T o = LY S AR 4
[4.1.2] UNIt TESE CASE 2. .uuuiiiiiiieeiiiiiireeeeeeeeeiiitreeeeeeeeesitbreeeeeeeesstsraseeeeeesasrssaseeesssassssaseesesesasssseseeesanans 4
0 e] B T A =T - 1Y T ST UUPN 4
[4.2] INTEEIratioN TEST CASES ..veeiicureeeieiieeeeiieeeeeitteeeeetreeesetteeeestteeeeabseeesassaeeesssaeesansaseesasteeessassneesasanessanes 5
[4.2.1] Integration Test Case 1: Testing User Datacccccuieeeeiieie ettt e 5
[4.2.2] Integration Test Case 2: Testing Added/Removed Property........cccceeecveeeerereeeeeceeeeereeeereeeennns 5
[4.2.3] Integration Test Case 3: Stop Alerts until Specified TIMecoeoiveeciiieeiii e, 6
[4.2.4] Integration Test Case 4: Testing Update of User Settings......ccccvveiveiieciie e 7
[4.2.5] Integration Test Case 5: Test Login and Connection with Read Capabilitiescccccceevveeennns 7
[4.3.1] Ul Test Case L: LOGEINE iN ..ueiiiiiiiieeiiieeeiiieeeesiteeeeetre e e s ttee e esabeeeesabeeeeenabaeeeennbaeesanseeeeensseeeesnnsees 8
[4.3.2] Ul Test Case 2: ManUal REfIESNccocuvuieiiiii ettt eeeaarne e e e e 8
[4.3.3] Ul Test Case 3: User edits data that is writable to the databasecccccvvvvvveviiiviiiiiiiiiiinnnnnn, 8
[4.3.4] Ul Test Case 4: Setting Alert OPtioNs.ttt e e e ecrrre e e e e e e e e nraaeeeaee s 9
[4.3.5] Ul Test Case 5: RECEIVING AlBITS.....ccuiiiiiiieee ettt eeecrree e e e e e eretrrr e e e e eeesabaaeeeeeesesnnraeaeeaeeas 9

Page ii

[4.3.6] Ul Test Case 6: Stop Alerts Until Specified TIMecceeviiieiiiiiie e 9

[5] Appendix

Page iii

[1] Introduction

[1.1] Document Scope

This document describes the testing plan that will be put into place and followed by
Team E working on the Yahoo! Property View widget. This document contains a detailed
outline of the guidelines that will be followed as well as testing processes and test cases
that will be used in conjunction of developing the Yahoo! Property View widget.

Section two of this document pertains to Software Quality Goals. Described in this
section are metrics and tools that will be used by the development team to assess the
quality of the software that is produced.

Testing processes (section three) are described in this document with information
relating to how the development team will doing version control as well as code reviews
on the project as a whole.

The final section of the testing plan document pertains to test cases and how they will
be used in conjunction with development of our components.

[1.2] Intended Audience

This document is not intended for widget users and will not give any information on
how to use the widget. This document is intended for stakeholders (persons affected by
the project) and the software development team (Purdue Team E).

[1.3] Project Identification

As stated in the requirements document 1.4.1, this project will provide a solution to
Yahoo's difficulty with accessing data collected from the various systems offered by
Yahoo. The domain of this widget is statistic analysis, and as such, the motivation of this
software is to aid the user with analysis by providing trending data, volume data, and
alerting mechanisms.

[2] Software Quality Goals

Page 1

[2.1] Overview

The Property View widget shall be developed to be used internally by Yahoo!.
Therefore, the code should be maintainable, well-documented, and easy to read. Code
inspections shall be done to assess whether or not any vulnerabilities exist within the
system that could harm the user or the Yahoo! network. The Property View widget shall
be developed such that any SQL statements that are sent to the Yahoo! Oracle database
will be checked for malicious attempts such as SQL injection.

Page 2

[2.2] Metrics
Metrics shall be performed on the code at intervals spread out throughout the
remainder of the development cycle.

A metric that will be used in the analysis of the Property View widget’s code is code
coverage.

Code coverage describes the degree to which the source code of a program (Property
View widget) has been tested. It is a form of testing that inspects the code directly and
is therefore a form of white box testing. The coverage criteria that will be used to
measure how well the program is being used are listed as such:

= function coverage: Has each function in the program been executed?

= Statement coverage: Has each line of the source code been executed?

= Decision coverage: Has each control structure (ex: if statement) evaluated to

both true and false?
= Condition coverage: Has each Boolean sub-expression evaluated both to true

and false?

= Path coverage: Has every possible route through a given part of the code been
executed?

= Entry/exit coverage: Has every possible call and return of the function been
executed?

Coverage criteria will be evaluated with the Fortify software mentioned earlier as well
as a program called JSCoverage which was developed to test the coverage of Javascript
code. There are also some other Javascript Coverage programs which have been
researched and could potentially be used.

Another metric that will be used in the analysis of the Property View widget is source
lines of code (SLOC). SLOC will be used to measure the size of the program by counting
the number of lines in the source code. This will be used to give a rough estimation of
the amount of time that has already been required to develop the widget as well as
estimations as to how much effort shall be needed on the remaining components.

Cohesion and coupling are also metrics which be used to help analyze the Property View
widget. This will be analyzed in an effort to determine how much each of the
components rely on each other as well as how strongly related the responsibilities of a
given class are.

[2.3] Tools

The Fortify Software package will be used as a tool to analyze code written in the
development of the Yahoo! Property View widget. The current program under the
software package called the Fortify Source Code Analyzer (SCA) is a tool in which the
team has access to and shall use when writing code. The Fortify SCA examines every line
of code and every program path to identify hundreds of different types of potentially
exploitable vulnerabilities.

JSCoverage is a tool that shall be used to help analyze the coverage code of the Property
View widget. It is a tool that shall be run periodically to see how well the code is
executing. Reports shall be created based on the results of the test.

[3] Testing Processes

[3.1] Overview

As discussed in the Overview of Software Quality Goals (current document, section 2.1),
the Property View widget shall be developed to be used internally by Yahoo!. The
development team shall adhere to those guidelines (of the SQG section) that were
outlined as well as follow the practices described below.

[3.2] Version Control

According to section 3 (Version Control) of the Implementation Plan, a CVS repository
shall be set up by the development team to be used in conjunction with construction of
the Property View widget. Each team member shall be given a separate branch in which
to develop code in. All team members shall have the ability to view the code of another
team member. Individual team members will be given a task (that can possibly be
shared with other team members depending) and during ongoing development of said
task, the code shall be updated within the user’s branch.

Versioning and committing of code to the head branch will be incremented upon the
completion of a new code base that has passed code reviews, unit testing, and
regression testing. For a new version of software to be incremented, it must meet one
or more of the criteria discussed in Section 3 of the Implementation Plan which are:

1. Yields better test results.

2. Fixes known bug(s).

3. Provides an improved look and/or feel.

4. Adds new features (not previously implemented).

As stated in the Implementation Plan, Eclipse shall be used by each team member that
has access to the team’s CVS repository.

[3.3] Code Reviews

All code developed by team members must follow the guidelines outlined in the
Implementation Plan describing coding standards (section 5). These guidelines have
information pertaining to the styling and commenting of code.

Code reviews shall be a very important task involved with the development of the
Property View widget. Following the Gantt Chart provided in the Implementation
Document (Section 2), there is time allotted for testing of features that were recently
implemented. This time frame will be used to conduct code reviews among other types
of testing involved with development of the widget.

Page 3

As code changes are made by a certain team member, there will be a document in

which must be filled out to highlight changes that are made with references to line
numbers and how they relate to the requirement and design documents. The team
member must do individual testing before submitting the code to be processed in a
code review.

[3.4] Other Test Processes

Tests to be run shall be automated. Scripts shall be written to test individual
components. However, there shall be some manual testing of the GUI interface that
cannot be tested with automated scripts.

[4] Test Cases

[4.1] Unit Test Cases

Will need some separate functions to help with unit testing. One function will be
needed to dump all the data pulled from a SQL statement to a file for quick and
easy viewing.

[4.1.1] Unit Test Case 1: DatabaseComm
Module or Class: Database Communicator

1. Testing: connect() method
2. Testing: query(String) method
3. Testing: insert() method

[4.1.2] Unit Test Case 2: UserDataClass
Module or Class: User Data

1. Testing: loadUserPreferences() method
2. Testing: SaveUserPreferences() method

[4.1.3] Unit Test Case 3: TabDataManager
Module or Class: Tab Data Manager

1. Automatic Updates
a. Dump all data from MMT to a text file using SQL statements
pulled from the user table.
2. Testing: enableAlerts(boolean) method
3. Testing: stopAlertsUntil(Time) method

Page 4

[4.1.4] Unit Test Case 4: TabViewer
Module or Class: Tab Viewer

1. Refresh function.

[4.2] Integration Test Cases

Integration testing will be done using Usage Model testing. This strategy relies
heavily on the team members to follow the isolated unit testing for individual
components in which they work on. The goal of the strategy is to avoid redoing
the testing already done, and instead flesh out problems caused by the
interaction of the components in the environment.

[4.2.1] Integration Test Case 1: Testing User Data
Preconditions: User is valid in database with some property data.

Description Pass Fail

1 Call is made to connect to database with user name.

Result: Successful connection, no errors logging in.

2 Call is made to grab data from MMT relating to current
user name.

Result: User data is downloaded and stored in a
temporary text file (this is to check whether or not data
was downloaded correctly).

[4.2.2] Integration Test Case 2: Testing Added/Removed Property
Preconditions: User is valid in database with some property data.
Property has been added to user’s table.
New data is available to be added to test new property.
Connection has already been made with current user.

Description Pass Fail
1 Call is made to refresh user information from user
table.

Result: Current data for user as well as new SQL
statements are downloaded.

2 Call is made to get information from MMT using user’s
SQL statements with data filled in pertaining to
properties in which they belong.

Result: A dump of all data is created in a temporary text
file to check for the validity of data. Information from
the newly created property shall be downloaded.

Page 5

Page 6

Tester removes user from property in users table.

Result: User belongs to one less property.

Call is made to refresh user information from user
table.

Result: Current data for user as well as new SQL
statements are downloaded.

Call is made to get information from MMT using user’s
SQL statements with data filled in pertaining to
properties in which they belong.

Result: A dump of all data is created in a temporary text
file to check for the validity of data. Information from
the newly created property shall not be downloaded.

[4.2.3] Integration Test Case 3: Stop Alerts until Specified Time
Preconditions: User is valid in database with some property data.

Data is added to test new anomaly alert.

Connection has already been made with current user.

Description

Pass

Fail

Date and time are specified in a variable (make sure it’s
only a few minutes in the future for easy testing
purposes).

Call is made to change current user settings.

Result: Current users next specified date/time to
receive alerts is updated.

Add new anomaly information to the database (must
be a part of a property that the current user belongs
to).

Check the alerts log.

Result: No new alerts should be displayed.

Wait until date/time specified in variable.
Call checkForAlerts().
Check the alerts log.

Result: New alert should be created with information
pertaining to data that was added in step 2.

[4.2.4] Integration Test Case 4: Testing Update of User Settings
Preconditions: User is already logged in.
User has settings already defined.

Description Pass Fail

1 Set receiveAlerts variable to ‘true’.
Call updateUserSettings().

Result: Message of successful change returned.

2 Add new information to anomaly database.
Call checkForAlerts().

Result: New alert should be created with information
pertaining to property in which user belongs.

3 Set receiveAlerts variable to ‘false’.
Call updateUserSettings().

Result: Message of successful change returned.

4 Add new information to anomaly database.
Call checkForAlerts().

Result: No new alerts should have been created..

[4.2.5] Integration Test Case 5: Test Login and Connection with Read Capabilities
Preconditions: Database login is valid to connect to database.

Description Pass Fail

“

1 Set oracleDBLoginName = “----“,

“

Set oracleDBPassword = “----“,
(The two above values are used to make the initial
connection to Oracle database. These are different
from usernames.)

Call openOracleConnection().

Result: Message of Connection Open success.

2 Create SQL statement to dump first 10 users in
database.

Call runOracleCommand(sqISTM).

Page 7

Page 8

Result: First 10 users in Oracle Database User Table
returned.

[4.3] System and User Interface Test Cases

[4.3.1] Ul Test Case 1: Logging in

Preconditions: User has started the program

#

Description

Pass

Fail

1

User tries logging in with no username typed in the login display

Result: Error message appears telling user to enter a username

User tries logging in with a username not found in the contacts
table of the database

Result: Error message appears saying that the username is not
valid

User logs in with a valid username

Result: Users tabs according to MMT are created and any options
for that user saved from a previous login are loaded otherwise if
the user has not previously logged in the default options are
loaded

[4.3.2] Ul Test Case 2: Manual Refresh

Preconditions: User has logged in

Description

Pass

Fail

User clicks refresh button for specific tab

Result: Tab’s data is synchronized with the database data it is
displaying and graphing. Any alerts arising from updated data are
handled according to user’s specifications for alerts regarding the
tab

User clicks refresh all button

Result: The data for each tab is synchronized with the database.
Any alerts arising from the updated data are handled according to
the alert settings chosen by the user for the tab(s) receiving alerts

[4.3.3] Ul Test Case 3: User edits data that is writable to the database

Preconditions: User has logged in

User has a tab open where there is an editable field

Description

Pass

Fail

User inputs data of an invalid data type into editable field

Page 9

Result: Error message appears saying the input value is an invalid
data type

User inputs valid data into editable field

Result: The table entry in the database that corresponds to the
field edited by the user is updated with the user’s input

[4.3.4] Ul Test Case 4: Setting Alert Options

Preconditions: User has logged in
User has the settings tab open.

Description

Pass

Fail

User inputs data of an invalid data type into editable field

Result: Error message appears saying the input value is an invalid
data type

User inputs valid data into editable field

Result: The table entry in the database that corresponds to the
field edited by the user is updated with the user’s input

[4.3.5] Ul Test Case 5: Receiving Alerts

Preconditions: User has logged in

User has a ‘receive alerts’ optioned set to true.

Description

Pass

Fail

Insert new information into database (creating anomaly) for
property in which user does not belong.

Result: No alert shall be displayed.

Insert new information into database (creating anomaly) for
property in which user does belong.

Result: Alert shall pop up with information pertaining to the
anomaly.

[4.3.6] Ul Test Case 6: Stop Alerts Until Specified Time

Preconditions: User has logged in
User belongs to a property.

Description

Pass

Fail

User selects time and date that is in the past (relevant to the
current date and time).

Result: Error message shall be displayed saying a date was
specified that is not in the future.

2 User selects time and date that is in the future.

Result: Pop-up will inform user that all alerts will be held until
specified date as well as updating label that states when the next
alert shall be processed.

[5] Appendix
Definitions:
Property View widget > The application being developed for Yahoo!.

External Links:
Tools Used by Development Team:
Fortify Software = http://www.fortify.com/
JSCoverage > http://siliconforks.com/jscoverage/

Page 10

