
 
 
 
MITRE Baseline 
Configuration System 
Software Requirements Specification 
 
FINAL REVISION, September 17, 2008 
Purdue University, CS 307, Fall 2008 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team MITRE:   
Catherine Brown      

Michael Dunn           
Mark Nowicki          

David Tittle              
 
 
 
 



 
 

 
1

1. Introduction 
1. Purpose………………………………………………………………………     2 
2. Overview…………………………………………………………………….     2 

 
2. Description 

1. Project Synopsis……………………………………………………………..   2 
2. Project Domain………………………………………………………………   2 
3. Project Environment………………………………………………………....   2 
4. Project Platform……………………………………………………………...   2 
5. Constraints…………………………………………………………………...   3 
6. Dependencies………………………………………………………………...   3 

 
3. Features 

1. Automated Document Retrieval……………………………………………..   3 
2. XML Parse Functionality……………………………………………………   3 
3. XML Format Flexibility……………………………………………………..   3 
4. Database Compatibility………………………………………………………   3 
5. Configurable Update Alerts…………………………………………………..   4 
6. Modifiable Baseline History………………………………………………….   4 
7. Access Control………………………………………………………………..   4 
8. Shell Access…………………………………………………………………..   4 
9. Dynamic Client Handling…………………………………………………….   4 
10. Self-Diagnostic Functionality………………………………………………...   4 

 
4. Use Cases 

1. Fetch XML Files………………………………………………………………   4 
2. Check XML Format…………………………………………………………..   5 
3. Parse XML Files………………………………………………………………   5 
4. Storing History ……………………………………………………………….   5 
5. Send Alerts……………………………………………………………………   5 
6. Modify Baseline………………………………………………………………   5 
7. Remove Entry from Database………………………………………………...   6 
8. Add Client Computer…………………………………………………………   6 
9. Remove Client Computer……………………………………………………..   6 
10. Make Log Entry………………………………………………………………   6 

 
5. Nonfunctional Requirement 

1. Platform Independence………………………………………………………..   6 
2. Secure Design…………………………………………………………………   7 
3. Quality……………….………………………………………………………..   7 
4. Extendibility and Maintainability…………………………………………….   7 
5. Reliability…………………………………………………………………….   7 

 
 



 
 

 
2

 
 
 
1. Introduction 
 

1.1 Purpose 
This document contains the preliminary Software Requirement Specification for the 
MITRE Baseline Configuration System.  It contains a description of the project, a 
detailed list of features offered as well as use cases and other nonfunctional 
requirements.  This document will also provide a working description of the MITRE 
team's project in its entirety and should work as a reference for the MITRE team, 
class supervisors, and the corporate partners. 
 
1.2 Overview 
This Software Requirement Specification will document all of the features and use 
cases that the team will compile over the course of this project.  It also provides a 
guideline for the creation of user manuals and other useful documents. 



 
 

 
3

2. Description 
 

2.1 Project Synopsis 
The MITRE program will be a running script that will retain, compare, and parse 
information from provided XML files.  The application will need to be able to 
interpret various XML schemas such as Nessus and SCAP.  The program will run on a 
single server and will securely transfer XML files from provided resources.  Access to 
the script, its configuration files, its XML files, and its database must be limited and 
secure.  The program will also be able to alert personnel via email of inconsistencies 
in the XML files.  A self-diagnostic tool will be included to ensure its accuracy. 
 
2.2 Project Domain 
The MITRE Corporation is a not-for-profit organization chartered to work in the 
public interest.  MITRE is a Federally Funded Research and Development Center 
(FFRDC) that analyzes technical questions with a high degree of objectivity, and 
provides creative and cost-effective solutions to government problems.  Because of 
the open source requirements, the project will initially be working within the domain 
of the MITRE Organization, but in the future might fall within the domain of other 
organizations as well. 

 
2.3 Project Environment 
The software should be platform independent, and able to work in various 
environments, especially UNIX environments. 
 
2.4 Project Platform 
The software will be written in an open source language.  It will incorporate an open-
source database tool.  It also needs to be open source for maintainability, reusability, 
and extensibility.  Open source is also important because MITRE is a federally funded 
organization and this application may eventually be released to the public. 
2.5 Constraints 

• The software will run on a single server that will be dedicated to running the 
software.  

• It will be able to retrieve XML documents by using a standard transfer 
protocol.  

• Access to the software will be limited to those users who have the proper 
permission to access the client configuration data. Each user can have a 
different level of permission. 

• The software will need to adapt to various XML formats.  
• The software solution will need to be as independent as possible from libraries 

or environment system resources to ensure its ability to run without 
interruption or failure. 

• The software will include instructions necessary to administer and install the 
software, including a detailed explanation of the various configuration files 
used to create users and set appropriate permissions. 

 



 
 

 
4

2.6 Dependencies 
This project assumes that the server can handle the load placed on it by the software 
and is not restricted by any other software or hardware to complete its assigned 
functions.  It is also assumed that the server executing the software is physically 
secure and that the child servers and XML files will be available for file transfer over 
the network. This project assumes that correct configuration files will be provided. 

 



 
 

 
5

3. System Features 
 

3.1 Automated Document Retrieval 
The software will be able to run on a single main server, using an automated 
document retrieval process.  The server will establish a connection with any child 
servers via the network, and initiate an XML file transfer using a standard transfer 
protocol. 
 
3.2 XML Parsing Functionality 
The software will be able to parse collected XML files while comparing to previously 
collected files in order to detect changes throughout a file's history. 
 
3.3 XML Format Flexibility 
The software will have the capability to be configured to scan any kind of XML 
schema.  Different XML schemes can be added or removed from the scanning 
process depending on the needs of the system/user. 
 
3.4 Database Compatibility 
The software will be able to add, update, and remove information retrieved from 
XML files into a database.  A version history will also be stored in the database, 
which will be used when doing version comparisons as well as maintaining a baseline 
for these comparisons.  This will be done using an open source database technology. 
 
3.5 Configurable Update Alerts 
The software will allow users to determine which changes discovered in the XML 
scans/comparisons will be alerted, ignored, or documented.  Users will be able to 
determine who is alerted when they are confronted with different types of changes in 
configuration. 
 
3.6 Modifiable Baseline History 
The software will allow users to configure baselines for each specific child server on 
the network.  Users can make any modification in the history (which is stored in a 
database) a baseline for future comparisons. 
 
3.7 Access Control 
The software will allow the system to discriminate on whom uses the client interface 
module to access any of the child server histories.  It will use a username/password 
system that will use a previously defined Active Directory. 
 
3.8 Shell Access 
The software will allow the system to be accessed from Network Administrators 
and/or Security Managers to view XML version history, system status, and to enter 
command line functions.  The Command Line functions can be used to manually 
trigger automatic system events such as scanning and self diagnostic routines. 



 
 

 
6

 
3.9 Dynamic Client Handling 
The software will allow the system to efficiently and effectively maintain a list of 
active server connections.  Alerts will be sent if a new server becomes active, or an 
existing server is unable to transfer the XML file to the main server due to a 
connection loss. 
 
3.10 Self Diagnostic Functionality 
The software will allow the system to monitor its current 'health' with the use of test 
scans/comparisons and weekly alerts notifying users of current health situation.  It 
keeps a log file that has weekly health updates logged into the file.  It can only be 
accessed by credentialed users. 

 



 
 

 
7

4. Use Cases 
 

For the current use cases, the actor is the server and the system is the XML Baseline 
Tool unless otherwise noted.   
 
4.1 Use case:  Fetch XML Files 
ACTOR ACTIONS    SYSTEM RESPONSES 
1. Trigger XML file fetching 2. Transfer protocol initiated 
 3. Access server directories 
4. Store files 
 
  
4.2 Use case:  Check XML Format 
Related use cases: 
Includes: Parse XML File 

 
ACTOR ACTIONS    SYSTEM RESPONSES 
1. Trigger XML format check 2. Load initial lines of XML file 
3. Parse XML File 
 
 
4.3 Use case:  Parse XML Files (inclusion) 
ACTOR ACTIONS    SYSTEM RESPONSES 
1. Trigger parse XML files 2. Request file creation date 
3. Provide date 
4. Choose format check or full parsing 5. Parse file 
 6. Add parsed information to database 
 
4.4 Use case:  Store History (Updates) 
Related use cases: 
Includes: Send Alerts, Check XML Format 
 
ACTOR ACTIONS    SYSTEM RESPONSES 
1. Prepare (open up) database 
2. Trigger store history 3. Query the database 
4. Create history file 5. Update history file 
 6. Read tag priority configuration file 
7. Check XML Format 8. Locate high priority changes 
9. Send Alerts 
 
 
4.5 Use case:  Send Alerts (inclusion) 
ACTOR ACTIONS    SYSTEM RESPONSES 
1. Trigger send alerts 2. Locate and pass on e-mail addresses 
3. Send e-mail alerts 



 
 

 
8

 
 
 4.6 (Human User) Use case:  Modify Baseline 
ACTOR ACTIONS    SYSTEM RESPONSES 
1. Choose ‘Baseline’ command 2. Request server name 
3. Input server name 4. Request workstation name 
5. Input workstation name 6. Retrieve baseline configuration file 
 7. Display baseline configuration file 
8. Input/Choose new baseline date   9. Display updated configuration file and 
           await confirmation 
10. Confirm update    11. Save configuration file and exit mode 
 
4.7 (Human User) Use case:  Remove Entry from Database 
ACTOR ACTIONS    SYSTEM RESPONSES 
1. Choose ‘Edit Database’ command  2. Display ‘Edit Database’ menu 
3. Choose ‘Remove Entry’ command 4. Display database entries 
      5. Request entry to remove 
6. Input entry number    7. Remove entry and request   
          confirmation 
8. Confirm     9. Save database and exit mode 
 
 
4.8 Use case:  Add Client Computer 
ACTOR ACTIONS    SYSTEM RESPONSES 
      1. Check baseline configuration file for 
          workstation 
      2. Workstation not found 
3. Trigger Add Client Computer  4. Add workstation to configuration file 
5. Send Alerts 
 
 
4.9 (Human User) Use case:  Remove Client Computer 
ACTOR ACTIONS    SYSTEM RESPONSES 
      1. Check baseline configuration file for 
          workstation 
      2. Workstation found but no file present 
3. Send Alerts     4. Prompt for workstation removal 
5. Respond     6. Remove workstation from   
          configuration file and save and exit or 
          save and exit without removal 

 
 
4.10 Use case:  Make Log Entry 
ACTOR ACTIONS    SYSTEM RESPONSES 
1. Server becomes aware of application 2. Write error entry to log file 
Malfunction 



 
 

 
9

 
 
 
5. Nonfunctional Requirements 
 

5.1 Platform Independence 
The software should be as flexible as possible.  By using open source solutions, we 
enable the software to adapt to almost every platform and environment without any 
cumbersome licensing restrictions. 

 
5.2 Secure Design 
The software will need to be designed with security in mind.  Not only does the 
network need to be kept secure, but the information that the application collects and 
retains also needs to be kept secure.  To avoid security holes, all inputs and 
parameters to the application must be validated.  This will ensure that unwarranted 
database query injections are protected against.  Also, the software will need contain 
an access control system which validates the user’s identity and the integrity of 
incoming commands. 
 
5.3 Quality 
The MITRE Baseline Configuration System will employ high standards of quality.  
The software will be designed in such a way that it can be maintained by another 
software team after deployment.  With this, the software must have a high level of 
readability.  This includes a strict format of white spacing that will be consistent 
throughout the entire software package.  Also, this includes extensive commenting 
such as function descriptions, how they are used by other functions, function inputs, 
and resulting outputs.  Availability is also key to the success of this software.  The 
software will be needed to be running twenty-four hours a day, seven days a week to 
ensure a secure system.  Several functionalities will be needed to be executed during 
non-scheduled scan times, thus the need for 24/7 availability. 
 
5.4 Extendibility and Maintainability 
The software should contain a high level of extendibility.  Throughout the 
development of the application, the fact that the application will need to be used 
according to different standards and schema needs to be taken into account.  By 
providing this level of extendibility, the software will be much more maintainable 
because of the aforementioned ability to adapt to different standards if the application 
is used with different input styles. 
 
5.5 Reliability 
The MITIRE Baseline Configuration System will function with a high level of 
reliability.  Combined with previously defined system health checks and library 
functionality, all system errors will be handled preemptively to ensure stable 
processing. 


