

MITRE Baseline
Configuration System
Implementation Plan

FINAL REVISION, October 8, 2008
Purdue University, CS 307, Fall 2008

Team MITRE:
Catherine Brown

Michael Dunn
Mark Nowicki

David Tittle

 2

TABLE OF CONTENTS

1 INTRODUCTION...3

1.1 PURPOSE…………..3

1.2 BACKGROUND INFORMATION...3

1.3 PROCESSES…………..3

1.4 BUILDS…...…………..5

2 MANAGEMENT TOOLS, RISKS, AND CHALLENGES...7

2.1 MANAGEMENT TOOLS…...7

2.2 RISKS AND MITIGATION………..7

 3 TASKS, COST REQUIREMENTS, SCHEDULES..9

3.1 TASKS……………………...9

3.2 COST REQUIREMENTS………...……...11

3.3 SCHEDULES AND MILESTONES…...12

3.4 TEAM……………..……………….....………………………………………………………..12

 3

1. Introduction

1.1. Purpose

The project will be a running script that will retain, compare, and parse
information form provided XML files. The benefit for the stakeholders is to
remove the need for tedious manual comparisons.

1.2. Background Information

The design for the program is well underway, as described in the earlier Design
Document and Requirements Document. The stakeholders are MITRE, who will
be using the program, and the course instructors, who will be grading the project
in its entirety.

1.3. Processes

The software process we will use is a hybrid of the spiral model, phased release
model and concurrent engineering model. Each iteration through the loop
represents a phase, starting with “Requirements Gathering & Definition.” From
this process, we will get a “Specification” document. As a team, we will analyze
the “Specification” and estimate “Workload Analysis and Distribution.” From
this stage, we will break into sub-groups. Each sub-group will do
“Implementation Planning.” Prototyping would occur at this stage as well. The
“Implementation Planning” will yield a “Design” document for that part of the
project. The “Design” will be used to aid in “Implementation.” Once both sub-
groups have completed their implementation, the sub-groups will reunite for the
“Integration & Implementation Review.” During this process, the group will test
and review all code that has been committed to our system. Once code has been
integrated and tested properly, it will be approved by all group members for

 4

“Deployment.” After deployment, any unforeseen bugs will be tracked, logged
and prioritized in our “Analysis of Structure & Maintenance Cost.” During this
phase, we will also review the project, from a top down approach, looking at
such aspects as: technology used during implementation, usability concerns,
security and stability. From this analysis, we will perform “Requirements
Gathering & Definition” regarding our next phase, which starts the process over
again. This software process places emphasis on implementation review and
cooperation between group members. It also encourages an extra level of quality
assurance, so that all changes are thoroughly scrutinized before being considered
for a release. After reviewing the code from the bottom up during the
“Integration & Implementation Review” and following the “Deployment” the
software process takes a different approach to review, a top down approach in the
“Analysis of Structure & Maintenance Costs.” This assures that the design as a
whole is also scrutinized.

 5

1.3.1.

1.4. Builds

Sentinel is a large project to accomplish in just a few short weeks. In order to
complete the project, Build 1 will comprise of the Rules Manager and the
Database. The most urgent need is for the ability to compare XML files with the
flexibility of the user-defined rules and xml schemas. This is why the Rules
Manager needs to be the top priority – it is the component that will fulfill that
need. Even if no other component is completed, this one will be able to do the
automatic testing required. The database follows closely behind in priority as an
area to store all the information needed by the Rules Manager component. These
two components can meet the most basic defined requirements for the project and
can be demonstrated to the project partner.

 6

1.4.1. Build I

Once Build 1’s objectives are accomplished, the focus changes to the
features that need implementation. The Alert Manager and the System
Controller are the next priorities. The Alert component will be able to
gather information from the database and send alerts as necessary. The
System controller provides a single component that can direct and
organize the other components into a fully functioning program, rather
than a series of processes.

1.4.2. Build II

To wrap up Build 2, the Transfer Manager and the UI/Shell need to be
realized. The Transfer Manager will control the process of retrieving the
XML files from across the network, and the UI/Shell provides an access
point for the user.

1.5. Gantt Chart

 7

2. Management Tools, Risks, and Challenges

2.1. Management Tools

In order to schedule the implementation phase of the software a Gantt chart is
shown below. This management tool was chosen because it allows for larger
tasks to be broken down into smaller components, and each of these components
can then be given an estimated duration. This hierarchy is also displayed in an
aesthetically pleasing way with blue bars showing the duration of each class being
worked on with black lines overlaying these bars to show how the classes with
their durations add into the total duration for a particular component. Considering
all of the management tools made available to us, this aesthetically pleasing
quality of the Gantt chart, which allows for software developers to most easily
portray the scheduling of the project to a business partner, was a major factor in
deciding which management tool to use. On top of this, out of all the
management tools brought to our attention, some members of the team already
had some experience with creating Gantt charts. In regards to source control and
bug management, we decided on using Assembla which is a web-oriented project
management center. We chose this because it was a centralized location that can
accomplish both tasks, source control and bug management. Assembla includes a
standard code repository with source control for source management. On top of
this Assembla includes a tracking system that will allow us to label code that is to
be committed with a date and information regarding the changes or additions that
were made to the code. We plan to use this tracking feature to view when certain
bugs arise and make note of this on Assembla to accomplish the task of bug
management.

2.2. Risks and Mitigation

In the course of scheduling the builds for this software, three risks were identified
regarding the implementation phase. The first, and most general, risk is the
problem of incorrect duration estimates. More specifically, this risk involves the
chance that we may not have given ourselves enough time to complete one or
more of our scheduled tasks. The iterative design approach is our mitigation
strategy for this particular risk. In using an iterative design approach, the project
will be able to be presented in some working form to the business partner after
any particular step (task) in the implementation process. In this way, if a
particular task begins to take too long, a meeting can be arranged to explain why
the task that is taking an extended period of time. The project can then be shown
with the current functionality so that the project partner can see what functionality
has been implemented and what functionality may not be required for the finished
product. Another more specific risk identified, was the risk of underestimating
how much code will have to be written. In an effort to reduce the amount of code

 8

that is written, we will encourage the use of open source libraries that have
already been created in this project. Especially in the case of the XML Parser and
the transfer protocol, using open-source Python XML Parsing and transfer
libraries will greatly reduce the amount of code needed to be written. The third
risk identified in the course of scheduling the building of this application is the
risk of unidentified overhead. The only planned overhead as far as the current
schedule is concerned is the overhead for learning the Python programming
language. It has become apparent that there may be some overhead involved with
learning and setting up a MySQL database, as well as other unforeseen overhead
that may arise as the implementation of this software takes place. The only
reasonable mitigation strategy for this was to plan to include the learning
regarding all known overhead in the time allocated for the Python overhead. So
by learning both Python and MySQL, as well as any other overhead that we can
predict before the application implementation begins, before the actual coding
begins we hope to cover all overhead that will be involved in creating this piece
of software from beginning to end. The aforementioned mitigation strategies
were devised in hopes of reducing the amount of unforeseen problems that may
occur throughout the duration of the implementation phase of this project, but we
understand that we still need to expect that problems will arise that we are for
which we are not completely prepared.

 9

3. Tasks, Cost Requirements, and Schedules

3.1 Tasks

When developing the XML Baseline Configuration System, the workload will be
split up into smaller subsections as defined in the Gantt chart in Section 1.5. Each task
will be developed by two developers at a time, with the Python Overhead being a strictly
individual task. The order of the breakdown is done by the level of urgency or
importance to the system.

3.1.1 Python Overhead

This task can be broken down into multiple sections, but still are within
the constraints of the learning curve of the system. In order for the system
to be developed with quality, robustness, and maintainability, the
development team will need to get acquainted with the Python language,
which is the chosen development platform for this system. However,
learning the Python language will not be the only requirement. Other
requirements such as learning accessible, open source Python libraries and
researching and making use of existing Python Testing Suites are all
considered to be subsections to “Python Overhead”.

3.1.4 Rules Manager

The Rules Manager task is considered to be one of the most important
components of the system, thus a higher priority task. This component is
used for the actual parsing and comparing of the collected XML files. The
task can be broken down into subsections as follows:

3.1.4.1 Rule Class

The Rule Class is a class which contains a String which will contain an
XPath query. This XPath query will be used against the parsed DOM
Trees (Explained in the following section) in order to extract
important information for comparing the gathered XML file and the
baseline XML file. Will be instantiated by the RulesManager Class.

3.1.4.2 XMLTree Class

The XMLTree Class will be used to store the parsed XML files into a
DOM tree, which will consist of this class. Using the Rule Class, the
system will be able to simply query this class to extract needed
information for the comparison functionality.

 10

3.1.4.3 RulesManager Class

The RulesManager Class will be one of the largest and most complex
classes in the entire system. The RulesManager Class consists of
several functionalities including: parsing into DOM trees, comparison
of two DOM trees, and sending alert messages to the AlertManager
Class. To insure quick and easy implementation, a developer who
implemented the Rule Class, and a developer who implemented the
XMLTree Class will implement this section together.

3.1.3 Database

The Database task only consists of one task, the DBManager Class.
Essentially this class will be used for other classes to interface for the
database. This task has a high ranking due to the fact that in order to have
a fully automatic system, there needs to be a database in which a system
can quickly reference specific information. For example, if the system
wants to determine what rules apply to a specific XML file, then the
system can query the database for that object, and then use that object to
find any information it needs quickly, and reliably.

3.1.4 Alert Manager

The Alert Manager task is comprised of two subtasks. This task is ranked
as such do to the need of an automatic messaging service. This service
will be used when a change is found and someone needs to be alerted.

3.1.4.1 Alert Class

This class will be very simple, containing a simple String, and a client
id which will be used to identify which client server the change
belonged to. Will be used in the AlertManager Class.

3.1.4.2 AlertManager Class

This class will be used to manage all of the Alerts that were created,
and form messages from them. This will have the functionality to
gather information required and send the messages accordingly.

3.1.5 System Controller

The System Controller task consists of just one main class, the
SystemController class. This class will be used to create the automation
for the system. Since it is the main controller, this is a very critical task
for the system. Using all of the components that exist, this class will bring

 11

them together for full unity and automation of the system.

3.1.1 Transfer Manager

The completion of this task solely depends on the completion of these two
subtasks:

3.1.6.1 FileRetriever Class

This class will be used to create a connection using SCP to gather
required XML files from client servers.

3.1.6.2 TransferManager Class

This class will take the XML file retrieved from the FileRetriever class
and save it onto the file system.

3.1.7 UI/Shell

This task will be the final and least important component that will be
worked on in the project. However, it is still undetermined how/when this
will be developed. Since there is a chance for not fully completing the
system, it must be taken account for. For example, if 70% of the project is
complete by the end date, a UI/Shell must be developed for that 70%. A
system cannot be developed without having any methods of interaction.
With that stated, if the system goes as planned, any additional features
such as a web interface will be completed at the end of the project.

3.2 Cost Requirements

When determining the cost requirements for software projects such as this,
one has to take into account the best case scenario, and a worst case scenario.
Outlined in this section are both scenarios.

3.2.1 Best Case Scenario

When viewing the development plan in the best case scenario, the system
should be able to be completed in a total of six weeks. This best case
scenario can be observed by referencing the given Gantt chart in section
1.5. In this case, each task has allotted one week for completion, and
using a concurrent development method with four developers, it can be
done in six weeks. The concurrent development method allows for two
tasks to be worked on simultaneously by two groups of two developers.

 12

3.2.1 Worst Case Scenario

When viewing the development plan in the worst case scenario, there is no
way to identify when and where a problem may or may not occur.
However if an issue does arise that will delay development over the time
allotted (one week), special attention will be given to that portion and
handled efficiently. If a situation does arise where the deadline is
approaching and some tasks have not been completed, then those tasks
will be dropped and developing a UI/Shell for completed components will
take focus for all developers. Ensuring interactivity between the system
and the users is a high priority; however it cannot be done until the
developers have decided which components can be implemented in the
time allotted.

3.4 Schedule and Milestones

The schedule (timeline) of our project can be referenced from the Gantt chart
shown in section 1. The system is broken down into eleven different tasks and
should take approximately six weeks for completion. Milestones in the system
would be Build 1 and Build 2. Build 1 is a big milestone because three main tasks
will have been completed: Python Overhead, Rules Manager, and the Database.
Arguably, these could be the most difficult tasks to complete. The second
milestone will be Build 2. By Build 2 the entire system should be completed and
functioning.

3.5 Team

The team will divide into two pairs for each part of the project. After the
completion of a task, the pairs will split and reform such that one member from
each previous team combines to form a new team. In this way, each team member
will be able to share their experience on every part of the project with their
partner as well as take responsibility for general requirements.
The first week of work is dedicated to learning Python, and it is expected that
each member will continue to improve their python skills throughout the project.

