Design Document

Version 1.0 - 2008.10.03
Created 2008.09.21

Yahoo! Property View

Rob Shaw - Team Leader
Jacob McDorman - Project Leader
Robert Read - Technologist

Brad Van Dyk - Editor

Table of Contents
[L] INEFOTUCTION ... bbbttt bbb bbbt
[1.1] DOCUMENT SCOPE ..vveueeereeieeteeiiestee e estesteesteaseessaesteeseesraesseassesseessaenseaseesseessesneesseeseenneensennes
[1.2] INtENAEA AUGIENCE.eveeieee ettt st et et e s te e te e s aeenaeeneesreerennes
[1.3] PrOJECE OVEIVIBW......c.eeiiieieeiie sttt sttt sttt et sbe et ettt e be e e sreenbeenbennes
2 [T T =] I T T o OSSPSR
[2.1] Goals and GUIEIINESeoviiieie ettt
[2.2] ArcChiteCtural STrAtEGIESceviieieiiieie ettt ettt neeenes
[2.3] High-Level COMPONENt VIBWccviiiiieiieie ettt
[2.4] High-Level Deployment VIBWccvoiiiiiirecie ettt
0] DS =L [=To [B T=T] o o TP PRSPPSO
[B.1] LOGICAI WIBW ...ttt ettt et et e te et e s neenaeenaenreenneenes
2000 1 - USRS
[3.1.2] DatabaSECOMociiiiieiieie ettt bttt b et a et e enes
[3.1.3] DatabaSECONN.......ceeiiieieeie ettt ettt nreenes
[L8] TAD et
[3.1.5] DAtATADIE ... ettt bt
ST [T o o SR
[B.1.7] TADVIBWET ...ttt et e e re e be e s be e tesneesreeeeenes
[3.2] Detailed COMPONENT VIBWcoiuiiiiiiieiiieie sttt sttt sttt sneenre e enes
[B.3] PrOCESS WVIBWvieiieeieciie sttt ettt na et e e s e s sa et e e s e te e e e st e sneenneaneenreenneanes
[3.4] User Interface FIOW MOElcovoiiiiiiei e
Y 0] 01T L TSRO PRURRRON
[B] GHOSSANY ...ttt bbbttt et b bttt n e
[6] REVISIONS ...ttt ettt et et e st e et e e se e be e st e s re e beestesaeeteeneesneestaennenres

Page ii

[1] Introduction

[1.1] Document Scope

This document is the widget design document. This document contains a detailed
outline of design features that will be implemented into the property view widget. The
first section of this document will explain the high-level design specifications. It will
contain the following: the goals and guidelines of the project, the architectural
strategies that will be used, the high-level component view to demonstrate the software
components and different dependencies, and a high-level deployment view to model
the hardware used. The second section of this document will explain the detailed
design specifications which will contain the following: the logical view of class diagrams,
a more detailed component view, a process view to describe how the objects interact,
and a user interface flow model.

[1.2] Intended Audience

This document is not intended for widget users. It will not describe how the user uses
the system. This document is intended for the stakeholders (persons affected by the
project) and the software development team.

[1.3] Project Overview

As stated in the requirements document 1.4.1, this project will provide a solution to
Yahoo's difficulty with accessing statics collected from the various systems offered by
Yahoo. The domain of this widget is statistic analysis, and as such, the motivation of this
software is to aid the user with analysis by providing trending data, volume data, and
alerting mechanisms.

[2] High-Level Design

[2.1] Goals and Guidelines

There are no software requirements or objectives that have a significant impact on the
architecture.

[2.2] Architectural Strategies

Page 1

= The overall design of the project is not very complicated.

= There are no such requirements that suggest any special attention is needed to
certain styles or models of a user interface.

= The database is managed by another team and the Property View widget will
only connect to it and provide queries and a view of the data.

= There is no needed communication between components.

= There is no component to handle errors. All errors are reported directly to the
user.

[2.3] High-Level Component View

Page 2

Property View 2]
Tab Data il User Data il
Manager Update Tab Data Manager
Store/Update
Update Data Data)
Display Periodic/Manual SQL queries
Refresh
O—— DQ Database
O——
Write to Db
<«<up> 2 DB g]
Tab Viewer Communicator / Update
Write to Db/ Parser Comment
Update User Contact Info

The property view is the widget created to connect to the Data Quality database where
the data will be queried and updated if necessary.

The interaction between the Tab Viewer and the DB Communicator/Parser is the writing
of any updatable values to the database. An example would be the user writes in the
comment field for the bug tab, which is specified to be updateable by the MMT. Any
other values able to be written to the database will be editable through the Tab Viewer
and when entered by the user will be sent to the Communicator which will update the
values in the database. The user can choose to tell the Communicator to query the
database again for any information changed in the Contacts table for the user.

Data coming out of the DB communicator goes through the User Data Manager first so
any specified options by the user that get stored on the client will be applied to the data
before sending it to the appropriate tab.

The interface is query driven.

[2.4] High-Level Deployment View

<<device>>
:Client
<<device>>
:Yahoo! Widgets .DBServer
8] DQDB
Property View <<database>>
{Oraclel0}

The Property View component is what is being developed for this project. It will be deployable
on any client able to run Yahoo! Widgets and a network connection allowing it to access Yahoo's
data quality database.

Page 3

[3] Detailed Design

[3.1] Logical View

Page 4

User

- userName : STRING

- email : STRING

- regions : STRING

- sendMail : STRING

- signOffOwner : BOOL
- properties : STRING

views

|
Tab

- (void) loadUserData

DatabaseCom

+ (byte[]) sendQuery
+ (bool) sendUpdate

DatabaseConn

- dataSrcName : STRING
- dbUser : STRING
- dbPass : STRING

+ (bool) openConn
+ (bool) closeConn
+ (bool) createConn

[3.1.1] User

+tabName : STRING
- sqlIStms : STRING[]
- updatelnterval : TIME

=

DataTable

- (void) refreshTab

TabViewer

(void) updateUserinfo
(void) refreshTabs

- colNames : STRING[]
-rowNames : STRING[]
- rowData : VAR[][]

Graph

- graphType : STRING
- points : DOUBLE[]

The user class is where the options specified by the user and the user’s info from the
contacts table will be stored. The class will be responsible for writing certain data to the
client’s hard-drive when needed for persistence between sessions. Any data coming
from the database will be filtered according to any user settings through this class
before going to the appropriate tab data manager.

[3.1.2] DatabaseCom

This class is responsible for communication with the database. The class will parse data
coming from the database into a useable format before passing it to the User, which will

ultimately pass the data to a Tab. The DatabaseCom will also take data for updating the
database and make queries for collecting the data needed for the tabs.

[3.1.3] DatabaseConn

The DatabaseConn class stores the information needed to connect to a specified
database. It will be responsible for maintaining the connection with the database.

[3.1.4] Tab

The Tab class stores the data needed for each tab. The Tab class will be responsible for
keeping the data in the correct format whether it needs to be in a graph or in a table.
The tab class also keeps track of when it needs to automatically update the tab and if it’s
time to update it does so.

[3.1.5] DataTable

A DataTable is a formatting of certain data to be easily interpreted by the TabViewer so
it can be displayed in a table.

[3.1.6] Graph

A Graph is the formatting of certain data into a certain type of graph, which can be
easily interpreted by the TabViewer.

[3.1.7] TabViewer

The TabViewer is where the GUI functionalities will be handled. This is where the user
will specify options such as to turn off alerts for certain tabs, be able to manually refresh
certain or all tabs, and edit updateable fields for tabs. The user will be able to specify
which tab to view and see any Graphs or DataTables associated with that tab.

[3.2] Detailed Component View

Page 5

The DatabaseCom and DatabaseConn classes work together to create the DB
Communicator/Parser component.

The User class functions as the User Data Manager component.

The Tab, Graph, and DataTable classes are all part of the Tab Data Manager component,
and the TabViewer class functions as the Tab Viewer component.

[3.3] Process View

User
<<actor>>

1. User logs in .

4. Get Tab info from Db
And update tab data

5. Update Tab Viewer
With created Tabs

6. User edits

Username

Updateable data

7. Send data update to
Database Communicator
And the Communicator
Sends the update to the

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Database |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Page 6

User Database Comm Tab Tab Viewer
<<class>> <<class>> <<class>> <>
1 1 1 1
™		
Query contacts for user } } }		
1 1		
T 1		
o <<create>> — !		
1 1		
— Refresh() }		
Tab data I		
/		
!		
1		
Update tab		
1 1		
Teb : :		
Il Il		
Editing of updateable data | -

| |

| |

1 1

| |

! Updated Data
|

[3.4] User Interface Flow Model

Login
Can click
Can change user -
. Information tab at
at any time ;
| any time
o
Click
Change User Information Tab
View
Preferences Tab
Save Data Change Information tabs
Preferences determined by MMT
o7
View
Information Tab
) Modify Click Refresh
View Data Updateable Data Button

Save Data

A field is only editable in the TabViewer if it is specified as updateable by the MMT. This
restriction should remain in place because allowing the user to edit fields not able to be
written to in the database would not serve any purpose and may lead to confusion.

Page 7

[4] Appendix
No additional information.

[5] Glossary
Property View = The name of the widget.
DatabaseCom = Database Communicator Class
DatabaseConn = Database Connector Class

[6] Revisions
No revisions have been made at this time.

Page 8

