
{C}
Lecture 3

Basic Data Types 



Data Types
Data types are sets of values along with operations that 
manipulate them 

For example, (signed) integers in C are made up of  the set of 
values  …, -1, 0, 1, 2, … along with operations such as 
addition, subtraction, multiplication, division…  

Values must be mapped to data types provided by the 
hardware and operations compiled to sequences of hardware 
instructions

2



Types: Java v. C
In Java  
‣primitive types (int, float, char,...)  
‣object types (each object has a set of fields and methods) 
‣type conversion are checked at runtime to forbid nonsensical conversions, 
e.g., int to Object 

In C, types have a less rigid definition 
‣are a convenient way of reasoning about memory layout  
‣all values (regardless of their type) have a common representation as a 
sequence of bytes in memory  
‣primitive type conversions are always legal

3



Data Types
Designing a computer language requires choosing which data 
types to build in, and which ones must be defined by users 

The tradeoff is one of expressiveness vs. efficiency 

Expressiveness refers to the ability to clearly express solutions 
to computational problem.  Abstraction 

Efficiency refers to the ability to map the data type’s operation 
to machine instructions.  Performance 

The design of C typically favors efficiency

4



pits - semantics
Imagine a data type called pit (for pair o’ bits) with values:  
0, 1, 2, 3 

pits have one operation the postfix increment:  ++

The meaning of ++ is the function: 

0 ++ = 1,   1 ++ = 2,   2 ++ = 3,   3 ++ = 0

Observations: 
‣The data type is finite 
‣The increment operation wraps around

5



pits - implementation
A variable of type pit is represented by two bits in  memory 

00 = 0 
01 = 1 
10 = 2 
11 = 3 

 Pseudo code implementation of ++ 
pit pp(pit p) {
    int x = p;
    x += 1;
    if (x==4) x = 0;
    return (pit) x;
}

6



signed pits
To represent signed pits one bit is need for the sign: 
‣decrease the range of values 
‣increase the number of bits used to represent the data type 

Assume the size of the data type must not change. 

signed pits can take the following values: -1, 0, 1

The implementation is as follows 

    00 = 0   01 = 1   10 = 0  11 = -1

7



signed pits

    00 = 0   01 = 1   10 = 0  11 = -1 

The increment function is somewhat more complex 

signed pit function<++>(signed pit p) {
  int x = p;
  int s = (p >> 1);  /* get sign */
  if (x == 1) then return -1   /* max value */
    else {
      x++; 
      if (s) then return x else x + 2
         /* incorporate sign bit */

             }

8

00 ++ = 01,  01 ++ = 11,   10 ++ = 01,  11 ++ = 10



http://en.wikipedia.org/wiki/Hexadecimal

Byte
A byte = 8 bits 
‣Decimal 0 to 255 
‣Hexadecimal 00 to FF 
‣Binary 00000000 to 11111111 

In C: 
‣Decimal constant:          12 
‣Octal constant:            014 
‣Hexadecimal constant: 0xC

9



Words
Hardware has a `Word size` used to hold integers and 
addresses 

The size of address words defines the maximum amount of 
memory that can be manipulated by a program 

Two common options: 
‣32-bit words => can address 4GB of data 
‣64-bit words => could address up to 1.8	x	1019 

Different words sizes (integral number of bytes, multiples and 
fractions) are supported

10



Addresses
Addresses specify byte location 
in computer memory 
‣address of first byte in word 
‣address of following words differ  
by 4 (32-bit) and 8 (64-bit) 

11

Carnegie Mellon 

7 

J1.+:B."(*#(+&C(81.'&B.-)*"D)61*&

!  F++.($$($&=5(0"7'&!'#(&
N10)61*$&
!  :--+477',U'g+7*'N6*4'H)'V,+-'
!  :--+47747',U'7.//477HC4'V,+-7'-HW4+'

N6'`'_%$#NH*a',+'c'_=`#NH*a'

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 

32-bit
Words Bytes Addr.

0012 
0013 
0014 
0015 

64-bit
Words

Addr 
=
?? 

Addr 
=
?? 

Addr 
=
?? 

Addr 
=
?? 

Addr 
=
?? 

Addr 
=
?? 

0000 

0004 

0008 

0012 

0000 

0008 

Carnegie Mellon 

1 

!"#$%&!'#($%&)*+&,*#(-(.$&

!"#$!%&'()*+,-./0,)'*,'1,23.*4+'567*427'
$)-'84/*.+49':.;<'$=9'$>!>'

,*$#./0#1.$2''

?@)-6'A+6@)*'@)-'B@C4'DEF@GG@+,)'© 



Data Types
The base data type in C 
‣int - used for integer numbers 
‣float - used for floating point numbers 
‣double - used for large floating point numbers 
‣char - used for characters 
‣void - used for functions without parameters or return value 
‣enum - used for enumerations 

The composite types are 
‣pointers to other types 
‣functions with arguments types and a return type 
‣arrays of other types 
‣structs with fields of other types 
‣unions of several types

12



Qualifiers, Modifiers & Storage
Type specifiers 
‣short - decrease storage size 
‣long - increase storage size 
‣signed - request signed representation 
‣unsigned - request unsigned representation 

Type qualifiers 
‣volatile - value may change without being written to by the program 
‣const - value not expected to change 

Storage class 
‣static - variable that are global to the program 
‣extern - variables that are declared in another file

13



Sizes
14

Type Range  (32-bits) Size in 
bytes

signed char −128 to +127 1

unsigned char 0 to +255 1

signed short int −32768 to +32767 2

unsigned short int 0 to +65535 2

signed int −2147483648 to +2147483647 4

unsigned int 0 to +4294967295 4

signed long int −2147483648 to +2147483647 4 or 8

unsigned long int 0 to +4294967295 4 or 8

signed long long int −9223372036854775808 to +9223372036854775807 8

unsigned long long int 0 to +18446744073709551615 8

float 1×10−37 to 1×1037 4

double 1×10−308 to 1×10308 8

long double 1×10−308 to 1×10308 8, 12, or 16



Character representation
ASCII code (American Standard Code for Information 
Interchange): defines 128 character codes (from 0 to 127), 
In addition to the 128 standard ASCII codes there are other 
128 that are known as extended ASCII, and that are platform- 
dependent. 
Examples: 
‣The code for ‘A’ is 65  
‣The code for ‘a’ is 97  
‣The code for ‘b’ is 98  
‣The code for ‘0’ is 48 
‣The code for ‘1’ is 49 

15



Understanding types matter… 
Types define an abstraction or approximation of a 
computation.... 

More practically, there are implicit conversions that take place 
and they may result in truncation, and ... 

Some data types are not interpreted the same on different 
platforms, they are machine-dependent 

‣sizeof( x )  returns the size in bytes of the object x (either a variable 
or a type) on the current architecture

16



Declarations
The declaration of a variable allocates storage for that variable 
and can initialize it 

  int lower = 3, upper = 5;
  char c = ‘\\’, line[10], he[3] = “he”;
  float eps = 1.0e-5;
  char arrdarr[10][10];
  unsigned int x = 42;
  char* ardar[10];
  char* a;
  void* v;
  void foo(const char[]);

Without an explicit initializer local variables may contain 
random values (static & extern are zero initialized)

17



Conversions
What is the meaning of an operation with operands of different 
types? 

      char c; int i;  … i + c …  

The compiler will attempt to convert data types without losing 
information; if not possible emit a warning and convert anyway 

Conversions happen for operands, function arguments, return 
values and right-hand side of assignments.

18



Reading
K&R: 
‣Chapter 1, pp. 22 - 34 
‣Chapter 2, pp. 35 - 48

19


