
{C}
Lecture 17

Callbacks,

Asynchronous Programming

Function Pointers
2

‣ When used as arguments to functions, they serve
multiple roles:
‣ They help encapsulate computation that is provided
by the caller (e.g., a comparison operator to a sorting
routine)
‣ They provide a simple form of object-oriented
abstraction
‣ They enable the callee to update caller’s state
conditionally, via the behavior of the supplied function

This last feature is commonly referred to as a callback

Use Cases
3

‣ Synchronous: when the callback is invoked, it fully finishes its computation
before it returns.
‣ Purely sequential
‣ Example: the comparator operator to Bubble Sort or the function pointer

argument to fold or map

‣Asynchronous: when the callback is invoked, it returns back to the caller
before fully completing its computation.
‣ Implicitly concurrent
‣ Example:
 - Network I/O
 - a callback might filter packets sent on a network
 - Once invoked, it returns immediately to allow the
 program to continue to work
 - It processes packets in the background

Context
4

‣ C is a sequential language (with concurrency extensions)
‣ But, its applications are meant to interface closely with
 operating system services. These services typically execute
 concurrently with each other
 - Devices (hard disks, network controllers, GUIs, and peripherals)
 - Processes (User and OS/kernel)

‣ Callbacks can be used to interact with these services

29

Computer architecture

memory needed
for program
execution
(stack, heap, etc.)
accessed by address

registers accessed
by name

ALU is main
workhorse of CPU

disk/server stores program
when not executing

Example

Asynchronous I/O:

 - The I/O operations we’ve seen so far are also synchronous:
once invoked, they don’t return until they’ve fully completed.

 - If I/O were asynchronous, it would allow operations to
return back to the caller immediately, but continuing to work in
the background.

 - Callbacks are a natural mechanism to control and manage
asynchronous I/O actions

5

Example
6

- Consider a name-lookup service (like DNS)
- A client makes a lookup request
- Service returns the IP address of the name

 void LookupAC(NSChannel_t *c, char *name) {
 int addr;
 SendLookupRequest(c, name);
 RecvLookupResponse(c, &addr);
 printf("Got response %d\n", addr);
}

send a message to the lookup
service on a channelreceive a response with the

address

name address

purdue.edu 128.210.7.200

“purdue.edu"
channel c

128.210.7.200

both sending and
receiving on the
channel is synchronous;
caller waits until response
is received

http://purdue.edu

Example
7

We can use callbacks to allow asynchronous receipt of the response
from the server

void Lookup(NSChannel_t *c, char *name) {
 OnRecvLookupResponse(c, &ResponseHandler);
 // Store state needed by send handler
 c->st = name;
 OnSend(c, &SendHandler);
 }
 void ResponseHandler(NSChannel_t *c, int addr) {
 printf("Got response %d\n", addr);
}

 void SendHandler(NSChannel_t *c) {
 if (OnSendLookupRequest(c, (char*)(c->st)) == BUSY) {
 OnSend(c, &SendHandler); }}

callbacks

“Register” callbacks

Lookup Service
Registry

channel Response Send

c ResponseHandler SendHandler

When channel is not busy, it calls
SendHandler to try to send the
message

Generalizing …
8

‣ C allows a limited set of interactions with the external
environment
‣ These interactions (and the manner in which they are
handled) form C’s signal interface
‣The signaling mechanism has three parts:

‣ The signal name
‣ The handler associated with the signal
‣ A mechanism to “raise” the signal, i.e., invoke the handler

