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Callbacks,

Asynchronous Programming



Function Pointers
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‣  When used as arguments to functions, they serve 
multiple roles:
‣  They help encapsulate computation that is provided 
by the caller (e.g., a comparison operator to a sorting 
routine)
‣  They provide a simple form of object-oriented 
abstraction
‣  They enable the callee to update caller’s state 
conditionally, via the behavior of the supplied function

This last feature is commonly referred to as a callback



Use Cases
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‣ Synchronous: when the callback is invoked, it fully finishes its computation 
before it returns.  
‣ Purely sequential
‣ Example: the comparator operator to Bubble Sort or the function pointer 

argument to fold or map

‣Asynchronous: when the callback is invoked, it returns back to the caller 
before fully completing its computation.
‣ Implicitly concurrent
‣ Example: 
    - Network I/O
    - a callback might filter packets sent on a network
    - Once invoked, it returns immediately to allow the 
      program to continue to work
    - It processes packets in the background



Context
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‣  C is a sequential language (with concurrency extensions)
‣  But, its applications are meant to interface closely with    
 operating system services.  These services typically execute 
 concurrently with each other
 - Devices (hard disks, network controllers, GUIs, and peripherals)
  - Processes (User and OS/kernel)

‣  Callbacks can be used to interact with these services
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Computer architecture

memory needed
for program
execution
(stack, heap, etc.)
accessed by address

registers accessed 
by name

ALU is main 
workhorse of CPU

disk/server stores program
when not executing



Example

Asynchronous I/O:

  - The I/O operations we’ve seen so far are also synchronous: 
once invoked, they don’t return until they’ve fully completed.

  - If I/O were asynchronous, it would allow operations to 
return back to the caller immediately, but continuing to work in 
the background.

  - Callbacks are a natural mechanism to control and manage 
asynchronous I/O actions
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Example
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- Consider a name-lookup service (like DNS)
- A client makes a lookup request
- Service returns the IP address of the name

 void LookupAC(NSChannel_t *c, char *name) {
    int addr;
    SendLookupRequest(c, name);
    RecvLookupResponse(c, &addr);
    printf("Got response %d\n", addr);
}

send a message to the lookup 
service on a channelreceive a response with the 

address

name address

purdue.edu 128.210.7.200

“purdue.edu"
channel c

128.210.7.200

both sending and
receiving on the 
channel is synchronous;
caller waits until response
is received

http://purdue.edu


Example
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We can use callbacks to allow asynchronous receipt of the response 
from the server

void Lookup(NSChannel_t *c, char *name) {
    OnRecvLookupResponse(c, &ResponseHandler);
    // Store state needed by send handler
    c->st = name;
    OnSend(c, &SendHandler);
  }
  void ResponseHandler(NSChannel_t *c, int addr) {
    printf("Got response %d\n", addr);
}

  void SendHandler(NSChannel_t *c) {
    if (OnSendLookupRequest(c, (char*)(c->st)) == BUSY) {
      OnSend(c, &SendHandler); }}

callbacks

“Register” callbacks

Lookup Service
Registry

channel Response Send

c ResponseHandler SendHandler

When channel is not busy, it calls 
SendHandler to try to send the 
message



Generalizing …
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‣  C allows a limited set of interactions with the external 
environment
‣  These interactions (and the manner in which they are 
handled) form C’s signal interface
‣The signaling mechanism has three parts:

‣  The signal name 
‣  The handler associated with the signal
‣  A mechanism to “raise” the signal, i.e., invoke the handler


