C}

Lecture 1/
ks,
Callbac ‘
v
Alymhr“q rogsamming

Function Pointers

* When used as arguments to functions, they serve
multiple roles:
> They help encapsulate computation that is provided
by the caller (e.g.,a comparison operator to a sorting
routine)
> They provide a simple form of object-oriented
abstraction
> They enable the callee to update caller’s state
conditionally, via the behavior of the supplied function

This last feature is commonly referred to as a callback

Use Cases

~ Synchronous: when the callback is invoked, it fully finishes its computation
before it returns.
> Purely sequential
> Example: the comparator operator to Bubble Sort or the function pointer
argument to fold or map

~ Asynchronous: when the callback is invoked, it returns back to the caller
before fully completing its computation.
> Implicitly concurrent
> Example:
- Network I/O
- a callback might filter packets sent on a network
- Once invoked, it returns immediately to allow the
program to continue to work
- It processes packets in the background

Context

> C is a sequential language (with concurrency extensions)
> But, its applications are meant to interface closely with
operating system services. These services typically execute
concurrently with each other
- Devices (hard disks, network controllers, GUIs, and peripherals)
- Processes (User and OS/kernel)
> Callbacks can be used to interact with these services

CPU

registers accessed Register file —
by name —
ALU is main ||l —— ARV

workhorse of CPU -

vis- il e & ~\ memory needed

g™ l - g4 e for program
Bus interface brli/cg)ge #'1 merilgry elo, Wordi 1 execution
| hellocode | (stack, heap, etc.)

i
4 J/ accessed by address
I/O bus -J .-J U ,
Expansion slots for
2 _ other devices such
USB Graphics Disk as network adapters
controller adapter controller
o) *)
[] I el

i L R hello executable disk/server stores program

! Disk | stored on disk when not executing

Example

Asynchronous 1/O:

- The 1/O operations we’ve seen so far are also synchronous:
once invoked, they don’t return until they’ve fully completed.

- If 1/O were asynchronous, it would allow operations to
return back to the caller immediately, but continuing to work in
the background.

- Callbacks are a natural mechanism to control and manage
asynchronous |/O actions

Example

- Consider a name-lookup service (like DNS)
- A client makes a lookup request
- Service returns the IP address of the name

void LookupAC(NSChannel t *c, char *name) {

int addr;

SendLookupRequest (c, name);
RecvLookupResponse(c, &addr);
printf ("Got resporfSe %d\n", addr);

receive a response with the
address

“purdue.edu”

name

both sending and
receiving on the

channel is synchronous;
caller waits until response
is received

send a message to the lookup
service on a channel

address

channel ¢

u §128.210.7.200

s

128.210.7.200

http://purdue.edu

Example

We can use callbacks to allow asynchronous receipt of the response
from the server

void Lookup(NSChannel t *c, char #*name) ({
OnRecvLookupResponse(c, &ResponseHandler); < “Register” callbacks
// Store state needed by send handler
c->st = name;
OnSend(c, &SendHandler);

}
void ResponseHandler (NSChannel t *c, int addr) { callbacks
printf("Got response %d\n", addr);
}
void SendHandler (NSChannel t *c) {
if (OnSendLookupRequest(c, (char#*)(c->st)) == BUSY) {
OnSend(c, &SendHandler); }}
channel Response Send
When channel is not busy, it calls
C |ResponseHandler|] SendHandler SendHandler to try to send the

message

Lookup Service
Registry

Generalizing ...

> C allows a limited set of interactions with the external
environment
> These interactions (and the manner in which they are
handled) form C’s signal interface
> The signaling mechanism has three parts:
> The signal name
> The handler associated with the signal
> A mechanism to “raise” the signal, i.e., invoke the handler

