
{C}
Lecture 15

Function Pointers

Abstraction
How are abstractions manifested in languages?
‣As structures that encapsulate code and data providing information hiding

E.g. Classes in Java

‣As program structures that refactor common usage patterns
E.g., a sorting routine that can sort lists of different types

C doesn’t provide data abstractions like Java classes
‣No obvious way to package related data & code within a single structure

But, it does a provide a useful refactoring mechanism
‣Functions are the most obvious example
‣They abstract a computation over input arguments
‣What kinds of arguments can these be?

2

Types and Computation
Functions can be abstracted over
‣basic types (e.g., int, float, double,...)
‣structured types (e.g., structs, unions, ...)

These types are primitive data abstractions
‣They represent a set of values along with operations on them

What about functions themselves?
‣They’re obviously a form of abstraction
‣Rather than representing a set of values, they represent a set of
computations abstracted over arguments of a fixed type
‣There is exactly one operation allowed on function types: application

3

Types
Following this line of thought:
‣A type is a set of values equipped with a set of operations on those values
‣A function is a computation abstracted over the types defined by its inputs
‣Hence, a function is an abstraction: it represents the set of values
produced by its computation when instantiated with specific arguments.

Hence, functions should be allowed to be abstracted over
functions, just as they are abstracted over primitives & structures

4

Concretely...
C permits functions to be treated like any other data object
‣A function pointer can be supplied as an argument
‣Returned as a result
‣Stored in any array
‣Compared

Main caveat:
‣Cannot deference the object pointed to by a function pointer on the left-
hand side of an assignment

5

Example
Operating on a list of integers…

 struct list {
 int val;
 struct list *next;
 };

 typedef struct list List;

6

Creating lists...
#include <stdio.h>
List *makeList(int n) {
 List *l, *l1 = NULL;
 for (int i = 0; i < n; i++) {
 l = malloc(sizeof(List));
 l->val = n-i;
 l->next = l1;
 l1 = l;
 }
 return l;
}

7

Given a number n, build a list of
length n containing elements 1..n
inclusive

Creating lists… (2)
#include <stdio.h>
List *makeList(int n) {
 List *l, *l1 = NULL;
 for (int i = 0; i < n; i++) {
 l = malloc(sizeof(List));
 l->val = i+1;
 l->next = l1;
 l1 = l;
 }
 return l;
}

8

Given a number n, build a list of
length n where the ith element of
the list contains n-i+1

Creating lists… (3)
We can imagine many different ways of populating a list
‣The overall control structure remains the same
‣Only the computation responsible for producing the next element changes

How can we abstract the definition to reuse the same control
structure for the different kinds of lists we might want?

9

Function pointers
Supply a pointer to the function that computes values

int add (int m) {
 static int n = 0;
 n++;
 return m+n;
}

int min(int m) {
 static int n = 0;
 n++;
 return (m < n) ? m : n;
}

10

Would like to abstract the
construction of lists so they
can be parameterized over
specific operators that
determine how the
elements of the list should
be filled in

Syntax
11

55

Function Pointers
Here’s the general variable type syntax:

[return type] (*[name])([parameters])

To use a function as a parameter to another function,
provide its type as follows:

Abstraction revisited
List *makeGenList (int n, int (*f)(int)) {
 List * l, *l1 = NULL;
 for (int i = 0; i < n; i++) {
 l = (List*) malloc(sizeof(List));
 l->val = (*f)(i);
 l->next = l1;
 l1 = l;
 };
 return l;
}

makeGenList(10,min);
 // { 9, 8, 7, … }
makeGenList(10,add);
 // {19, 17, 15, …}

12

Expects a function
pointer that points
to a function which
yields an int, and
which expects an
int argumentApplies (invokes) the

function pointed to by f
with argument n Can create lists

with different
elements (but
same structure)
without changing
underlying
implementation

Deriving a Recipe
13

‣ Suppose we want a generic way to perform some computation over all the
elements in an integer list.
‣ Examples: sum all elements, find min/max of all elements, etc.
‣ Key requirement: the computation can be expressed in terms of a given list

element, and the intermediate computation produced thus far
‣ Start the computation with an initial value for the result (call this the

`accumulator’)
‣ Supply a function pointer that represents the computation.
‣ Its signature is fixed - it takes two integers:
‣ one for the list element that is being examined as we iterate over the list
‣ one for the accumulator

‣ Use the result of applying the function as the new accumulated value
‣ Repeat until all list elements have been examined

Next step...
Now, lets define abstractions that compute over lists

int fold(int(*f)(int,int), List *l, int acc) {
 if (l == NULL)
 return acc;
 else {
 int x = l->val;
 return fold (f, l->next, (*f)(x,acc));
 }
}

14

a list of integers an accumulator

A function pointer that operates over
pairs of integers and returns an int

Each recursive call to fold operates on the current value and the
current accumulator; the result becomes the new value of the
accumulator in the next call

Using fold
Each computation expressed using the same definition

 int sum(int x,int y){ return x + y; }
 int mul(int x,int y){ return x * y; }
 int max(int x,int y){ return (x>y)?x:y; }
 int main () {
 int s,m,x; List *l;
 l = makeGenList(10, min);
 s = fold(sum,l,0);
 m = fold(mul,l,1);
 x = fold(max,l,0);
 }

15

Example
l = {9, 8, 7, … }

fold(sum, l, 0) =>

 fold(sum, {9, 8, …}, sum(9, 0)) // l->val = 9, acc = 0 =>

 fold(sum, {8, 7, …}, sum(8, 9) // l->val = 8, acc = 9 =>

 fold(sum, {7, 6, …}, sum(7, 17) // l->val = 7, acc = 17 =>

 fold(sum, {6, 5, …}, sum(6, 24) // l->val = 6, acc = 24 =>

 fold(sum, {5, 6, …}, sum(5, 30) // l->val = 5, acc = 30 =>

 .

 .

 .

 fold(sum, {1, 0}, sum(1, 44) // l->val = 1, acc = 44 =>

 fold(sum, { 0 }, sum(0, 45) // l->val = 0, acc = 45

 fold(sum, NULL, 45) return acc // acc = 45

16

Map
Fold allows a function to operate over the elements of a list
‣ Exercise: replace the recursive implementation with an imperative one

C’s type system conspires against richer kinds of operations
‣the accumulator must be an int
‣one can circumvent these limitations using casts and voids

Instead of accumulating a result, suppose we want to apply a
function to each element in the list?
‣Such operations are called maps

17

Map
 List* map(int(*f)(int), List *l) {
 if (l == NULL) return l;
 List * l1 = malloc(sizeof(List));
 l1->val = (*f)(l->val);
 l1->next = map(f, l->next);
 return l1;
 }

18

A function pointer that points to a function
which takes an integer argument and
produces an integer result

Apply the function pointed to by f to the current list element

Recursively apply map to the rest of the list

Map
int add(int m) { return m+1; }
int min(int m) { return m-1; }
int eve(int x) { return (x%2 == 0) ? 1 : 0; }

int main () {
 int a,m,e;
 List *l, *eveL, *addL, *minL;
 l = makeGenList(10,...);
 eveL = map(eve,l);
 addL = map (add,l);
 minL = map (min,l);

19

Objects...
Typical code that could use an object-oriented solution

 enum TYPE{SQUARE,RECT,CIRCLE,POLYGON};
 struct shape {
 float params[MAX];
 enum TYPE type;
 };
 typedef struct shape Shape;

 void draw(Shape∗ s) {
 switch(s−>type) {
 case SQUARE: draw_square(s); break;
 case RECT: draw_rect(s); break;
 ...

20

Objects...are arrays of fun *s
Typical code that could use an object-oriented solution

 void (∗fp [4])(Shape∗ s) = {
 drawSquare, drawRec,
 drawCircle, drawPoly};

 void draw (Shape∗ s) {
 (∗fp[s−>type])(s); // call right fun
 }

21

Managing state...
Objects are more than array of fun pointers, they have state
Similarly, some functions need to retain private state

Example: Counter
‣implement a function that counts the number of times it was invoked
‣the count should be hidden
‣there can be multiple counters in the program

22

