
CS18000: Problem Solving And Object-

Oriented Programming

3/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 1

CS18000: Problem Solving

And Object-Oriented

Programming

Data Abstraction: Inheritance

7 March 2011

Prof. Chris Clifton

Data Abstraction Continued

• Abstract data type provides

– Well-defined interface

– Separation of specification and representation

– Ability to use (what) without worrying about

how

• But what if an existing Abstract Data Type

isn’t enough?

– Do we have to start from scratch?

3/9/2011 CS18000 2

CS18000: Problem Solving And Object-

Oriented Programming

3/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 2

Solution 1: Extend the

Abstraction

• We saw this last Wednesday

– Abstraction didn’t have isFull()

– Implementation did

• Abstraction specifies what is necessary

– not everything possible

• But what if we like the existing

implementation?

– It just doesn’t go far enough

3/9/2011 CS18000 3

Solution 2: Use the

abstraction

• We can use one abstraction when creating

an instance of another

– Even if both implement the same abstraction

• Nothing special about this

• Example: Paired Queue

– StupidQueue runs out

– Solution: When full, use another

StupidQueue

3/9/2011 CS18000 4

CS18000: Problem Solving And Object-

Oriented Programming

3/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 3

PairedQueue

class PairedQueue implements Queue {

StupidQueue first, second;

public PairedQueue () {

first = new StupidQueue();

second = null;

}

public void enqueue (String item) {

if (first.isFull()) {

if (second == null)

second = new StupidQueue();

second.enqueue(item);

} else {

first.enqueue(item);

}

}

public String dequeue () {

String result = first.dequeue();

if (first.isEmpty() && second != null) {

first = second;

second = null;

}

return result;

}

public boolean isEmpty() {

return first.isEmpty();

}

}

3/9/2011 CS18000 5

PairedQueue must implement Queue to

use a StupidQueue:

A. True

B. False

Why does enqueue() check if second is null?

A. Can't create a new StupidQueue if second

already holds one

B. If not null, we’ve already created the second

one

C. There can't be more than one instance of the

class StupidQueue at a time

Solution 3: Extend the

implementation

• Inheritance: Define a new class that

includes an existing class

1. Same interface (just like using an Interface)

2. Same methods

3. Same representation

• Three separate concepts

– But unfortunately not independent

3/9/2011 CS18000 6

CS18000: Problem Solving And Object-

Oriented Programming

3/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 4

Running Example:

Boolean Circuits
public class Gate {

String name;

public Gate (String name)
{

this.name = name;

}

public String getName() {
return name;

}

public boolean getValue() {
return false;

}

}

3/9/2011 CS18000 7

Extending the Interface

Class UnaryOperator extends Gate {

public UnaryOperator(String name) {

}

public void setInput(Gate input) {

}

public Gate getInput() { }

}

3/9/2011 CS18000 8

CS18000: Problem Solving And Object-

Oriented Programming

3/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 5

Extending the Interface

• Child class must support all features of
parent
– Just like implementing an interface

– Key difference: Some features already
implemented

• Can be used anywhere parent class can be
used
– Just like an interface

• Can define new fields and methods
– But can’t be used if the type is the parent class

– Just like an interface

3/9/2011 CS18000 9

Extending the Methods

Class Not extends UnaryOperator{

public Not() { super(“Not”); }

public boolean getValue() {

return !(getInput().getValue());

}

}

3/9/2011 CS18000 10

CS18000: Problem Solving And Object-

Oriented Programming

3/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 6

Extending the Methods

• Overriding methods

– If instance of child, use child (even if you think

you have parent)

Gate g = new Not();

g.getValue() will use method from Not class

• Caveat: Class methods (static) not

overridden

– The one you get depends on the type of

object

3/9/2011 CS18000 11

Using methods from Parent

• Non-overridden methods easy
– Just use – example in Not

• Overridden methods accessed using super
keyword
– kind of like this

• Constructor of parent must be called in
constructor
– Exception: Default parent constructor (no

arguments) called automatically before child
constructor if you don’t

3/9/2011 CS18000 12

CS18000: Problem Solving And Object-

Oriented Programming

3/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 7

Extending the Representation

• Child class gets all fields of parent class

– Can access those not declared private or

protected

– Best to access through parent methods

• Can add new fields

– Also hide existing by using same name

• Bad idea – works like class methods:

Which you get depends on type

3/9/2011 CS18000 13

Extending the Interface

Class UnaryOperator extends Gate {

private Gate input;

public UnaryOperator(String name) {
super (name);

}

public void setInput(Gate input) {
this.input = input;

}

public Gate getInput() { return input; }

}

3/9/2011 CS18000 14

CS18000: Problem Solving And Object-

Oriented Programming

3/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 8

CS18000: Problem Solving

And Object-Oriented

Programming

Data Abstraction: Generics

9 March 2011

Prof. Chris Clifton

Announcements:

• Exam 1 scores and solution set out

– I’ll send more on how to interpret what you

see once Project 2 scores are posted

– Don’t think too much about your score until

you see this email

• No more labs this week

• Project 3 do soon

3/9/2011 CS18000 16

CS18000: Problem Solving And Object-

Oriented Programming

3/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 9

Putting it all together:

Inheritance

• Three concepts:
1. Inherit the interface

2. Inherit the methods

3. Inherit the representation

• Use inheritance (extends) when you want all
three
– If you just want interface, use

interface/implements

– If you just want methods, create as an instance
variable

3/9/2011 CS18000 17

Getting it Right: ISA

• UnaryOperator ISA

Gate

• Not ISA

UnaryOperator

• GroceryLine ISA

Queue

3/9/2011 CS18000 18

Gate

UnaryOperator

BinaryOperator

Not And Or

CS18000: Problem Solving And Object-

Oriented Programming

3/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 10

Putting it all together:

Inheritance

• Three concepts:

1. Inherit the interface

2. Inherit the methods

3. Inherit the representation

• Today: Mechanics and Caveats

– How to use inheritance

– How to misuse inheritance

3/9/2011 CS18000 19

Idea 1: Overriding

• Two implementations

power(BinaryOperator g) { /* high power */ }

power(UnaryOperator g) { /* low power */ }

Gate testg = new UnaryOperator();

power(testg);

• Will this work?

– Unfortunately, no

– Call based on (declared) type of argument

– There is no power(Gate g)

3/9/2011 CS18000 22

A: Yes

B: No

C: Can’t Tell

CS18000: Problem Solving And Object-

Oriented Programming

3/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 11

Idea 2: Cast

• Two implementations

power(BinaryOperator g) { /* high power */ }

power(UnaryOperator g) { /* low power */ }

Gate g = new UnaryOperator();

power((UnaryOperator) g);

• Will this work?

– Close, but not quite

– What if g was a BinaryOperator?

3/9/2011 CS18000 23

Solution: Ask an object it’s

Class

• Class getClass() defined for all objects

– Every class (automatically) inherits from Class

object

• Class has several useful methods

– String getName();

– Class getSuperclass();

– boolean isInstance(Object obj);

if(g.getClass().getName().equals(“UnaryOperator”))

power((UnaryOperator) g);

3/9/2011 CS18000 24

CS18000: Problem Solving And Object-

Oriented Programming

3/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 12

Caveats

• getClass() can be used as a crutch for bad

design

– It should be used only when you can’t find a

better way

• Try to compare Class objects, not names

– In a large system, same name can be used

multiple places (class defined inside a class)

3/9/2011 CS18000 25

Solution: Generics

• What if we want to support many types?

– But only one at a time

• Generics: Parameter attached to a type

– Queue<Integer>, Queue<String>

– instead of IntegerQueue, StringQueue

– One class

• (Messy) alternative: ObjectQueue

– use getClass() to enforce single type…

3/9/2011 CS18000 26

CS18000: Problem Solving And Object-

Oriented Programming

3/9/2011

© 2011 Chris Clifton, Aditya P. Mathur 13

Example: Typed Set

• Set of objects

– All must be of the same type

– But implement once

• Use: Set<Integer> s;

– Will only take integers

• Code example:

– interface Set<E>

– class SearchTree<E> extends Set

3/9/2011 CS18000 27

