
CS18000: Problem Solving And Object-

Oriented Programming

1/31/2011

© 2011 Chris Clifton, Aditya P. Mathur 1

CS18000: Problem Solving

And Object-Oriented

Programming

Class (and Program) Structure

31 January 2011

Prof. Chris Clifton

Classes and Objects

2

Set of real or

virtual objects

animal

vehicle

student
flower

Class Animal

Class Vehicle

Class Student

Class Flower

Template

in Java

dog

Class Dog

myDog

marysDog

Objects

created

AvTech Bus

student72

Represent Create

CS18000: Problem Solving And Object-

Oriented Programming

1/31/2011

© 2011 Chris Clifton, Aditya P. Mathur 2

Basic Class Structure

• Everything in Java starts with a
Class
– One class has a “main” method

• May have data associated with
it
– variables

– constants

• Statements occur in methods
– May also have declarations

• Constructor method called
when class created
– Initializes the object

– May have arguments

class Program {
public static final String Author =

“Chris”;

Date timeRun;

Program(String user) {
timeRun = new Date();

}

System.out.println(
timeRun.getTime());

public static void main (String[]
args) {

Program p;

p = new Program(args[0]);

System.out.println(
p.timeRun.getTime());

}

}

1/31/2011 CS18000 3

Variables

4

A variable is something whose value may change during

program execution.

Every variable has a name and a type.

Every variable must be declared before it is used.

CS18000: Problem Solving And Object-

Oriented Programming

1/31/2011

© 2011 Chris Clifton, Aditya P. Mathur 3

Declarations

5

int age;

float height, area;

String name

boolean

int x=1, y=0;

String firstName=“Harry”;

Names

6

Used to denote classes, objects, data

Contain characters; must start with a letter, or a

$ sign or an underscore.

Examples: height, area1, Dog, $great

Length unlimited, case sensitive.

Dog and dog are different names.

Convention: All class names begin with

an uppercase letter; all other names

begin with a lower case letter.

CS18000: Problem Solving And Object-

Oriented Programming

1/31/2011

© 2011 Chris Clifton, Aditya P. Mathur 4

Constants

7

A constant is something that cannot change during

program execution.

Examples:

Integer constants: 0, 1, -1, +24, 29, 300009998, O14,

0x1B

Floating point constants: 0.0, -2.345e28, -0.000976512

Boolean constants: true, false

Character constants: „ „, „a‟, „A‟, „$‟

String constants: “”, “ “, “Hi!”, “Alice in Wonderland”

Named Constants

8

A constant can be named and the name used instead of

the constant itself.

Examples:

final float pi=3.14159;

final boolean dogsExist=true;

CS18000: Problem Solving And Object-

Oriented Programming

1/31/2011

© 2011 Chris Clifton, Aditya P. Mathur 5

Simple expressions

9

Expressions are used to compute “something”.

float x, y, z;

x*y+z; // Arithmetic expression, results in float value

x<y; // Boolean expression, results in boolean

value

String firstName=“Mary”, lastName= “Jones”;

firstName+” “+lastName; // Results in a string

More in Chapter 2! And yet more to come!

Assignment statement

10

An assignment statement allows assigning the value of an

expression to a variable.

float p=x*y+z; // p gets the value of x*y+z

boolean q=x<y; // q gets the value of x<y

String firstName=“Mary”, lastName= “Jones”;

String name= firstName+” “+lastName;

More in Chapter 2! And yet more to come!

CS18000: Problem Solving And Object-

Oriented Programming

1/31/2011

© 2011 Chris Clifton, Aditya P. Mathur 6

Parameters and Arguments

• Program (String user) { … }

– user is a formal parameter

– Used like a variable inside the method

– Value provided when called

• Program p = new Program (“Chris”) { … }

– “Chris” is the argument to the method

– for this call, in the method, user has the value

“Chris”

1/31/2011 CS18000 11

Example in a Program:

Concurrent distance

• How can we speed up the Euclidean distance
program?
– We have multiple processors, use them to

compute parts of the sum simultaneously!

• Java Thread class:
– Set up what a thread is supposed to do

(constructor)

– Start it (returns immediately)

– Do other things

– Wait for it to end and get result

1/31/2011 CS18000 12

CS18000: Problem Solving And Object-

Oriented Programming

1/31/2011

© 2011 Chris Clifton, Aditya P. Mathur 7

Problem Solving:

Euclidean Distance

• What is the problem?
– What would be a

solution?

• Steps to a solution
– Input

– Calculations

– Output

• Data representation

• Function breakdown

• Now we start coding

• Get values for a, b
– Represent as Array

• Compute distance
– Sum squares of each

dimension
• Divide into parts

• Sum each separately

• Add parts together

– Take square root

• Display result

1/31/2011 CS18000 13

A

B
||
2

ba

Using Threads

• Like running a program

– “run” instead of “main”

– takes no arguments

• Object must know what

it is supposed to do

– Constructor

• Result stored in object

• Create object with

portion of a, b to sum

– Constructor takes arrays

and saves in object

• Variable in scope of

Class

– “main” divides and

creates objects

• run does the

summation

– Saves result in variable

1/31/2011 CS18000 14

CS18000: Problem Solving And Object-

Oriented Programming

1/31/2011

© 2011 Chris Clifton, Aditya P. Mathur 8

Example:

Euclidean Distance
public class Lec3Distc extends Thread

{

public double distance = 0;

private double x[], y[]; // Arrays to compute distance on

private int begin,end; // Dimensions to compute on

public Lec3Distc(double a[], double b[],int bg, int en)

// Set up what this instance is supposed to do when it runs.

{

x = a;

y = b;

begin = bg;

end = en;

}

public void run()

// What to do when "start" is called (from Thread class)

{

distance = SumSquareDiff(x,y,begin,end);

}

public static double SumSquareDiff(double[] a, double[] b, int begin, int
end)

// Requires: a.length = b.length; no null values in a or b

// Produces: Euclidean distance between a and b (>0)

{

double sum = 0;

for (int i=begin; i<end; i++) {

sum = sum + (a[i]-b[i])*(a[i]-b[i]);

}

return sum;

}

public static double EuclideanDistance(double[] a, double[] b)

// Requires: a.length = b.length; no null values in a or b

// Produces: Euclidean distance between a and b (>=0)

{

Lec3Distc first = new
Lec3Distc(a,b,0,(int)Math.floor(a.length/2));

Lec3Distc second = new
Lec3Distc(a,b,(int)Math.floor(a.length/2)+1,a.length);

first.start(); // Start computation on the first half, but don't
wait

second.start(); // Start computation on the
second half, don't wait

try {

first.join(); // Wait for the first half to finish.

second.join(); // Wait for the second half to
finish.

} catch(InterruptedException e) { /* Ignore */ }

return Math.sqrt(first.distance+second.distance);

}

• Rest of class (main) is unchanged

– This is Functional Abstraction in
action!

1/31/2011 CS18000 15

