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Basic Class Structure

• Everything in Java starts with a 
Class
– One class has a “main” method

• May have data associated with 
it
– variables

– constants

• Statements occur in methods
– May also have declarations

• Constructor method called 
when class created
– Initializes the object

– May have arguments

class Program {
public static final String Author = 

“Chris”;

Date timeRun;

Program( String user ) {
timeRun = new Date();

}

System.out.println( 
timeRun.getTime() );

public static void main (String[ ] 
args) {

Program p;

p = new Program( args[0] );

System.out.println( 
p.timeRun.getTime() );

}

}
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Variables
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A variable is something whose value may change during 

program execution.

Every variable has a name and a type.

Every variable must be declared before it is used.
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Declarations
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int age;

float height, area;

String name

boolean

int x=1, y=0;

String firstName=“Harry”;

Names

6

Used to denote classes, objects, data

Contain characters; must start with a letter, or a 

$ sign or an underscore.

Examples: height, area1, Dog, $great

Length unlimited, case sensitive.

Dog and dog are different names.

Convention: All class names begin with 

an uppercase letter; all other names 

begin with a lower case letter.
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Constants
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A constant is something that cannot change during 

program execution.

Examples: 

Integer constants: 0, 1, -1, +24, 29, 300009998, O14, 

0x1B

Floating point constants: 0.0, -2.345e28, -0.000976512

Boolean constants: true, false

Character constants: „ „, „a‟, „A‟, „$‟

String constants: “”, “ “, “Hi!”, “Alice in Wonderland”

Named Constants
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A constant can be named and the name used instead of 

the constant itself.

Examples: 

final float pi=3.14159;

final boolean dogsExist=true;
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Simple expressions

9

Expressions are used to compute “something”.

float x, y, z;

x*y+z; // Arithmetic expression, results in float value

x<y;  // Boolean expression, results in boolean

value

String firstName=“Mary”, lastName= “Jones”;

firstName+” “+lastName; // Results in a string

More in Chapter 2! And yet more to come!

Assignment statement

10

An assignment statement allows assigning the value of an 

expression to a variable.

float p=x*y+z; // p gets the value of x*y+z

boolean q=x<y;  // q gets the value of x<y

String firstName=“Mary”, lastName= “Jones”;

String name= firstName+” “+lastName;

More in Chapter 2! And yet more to come!
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Parameters and Arguments

• Program ( String user ) { … }

– user is a formal parameter

– Used like a variable inside the method

– Value provided when called

• Program p = new Program ( “Chris” ) { … }

– “Chris” is the argument to the method

– for this call, in the method, user has the value 

“Chris”
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Example in a Program:

Concurrent distance

• How can we speed up the Euclidean distance 
program?
– We have multiple processors, use them to 

compute parts of the sum simultaneously!

• Java Thread class:
– Set up what a thread is supposed to do 

(constructor)

– Start it (returns immediately)

– Do other things

– Wait for it to end and get result
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Problem Solving:

Euclidean Distance

• What is the problem?
– What would be a 

solution?

• Steps to a solution
– Input

– Calculations

– Output

• Data representation

• Function breakdown

• Now we start coding

• Get values for a, b
– Represent as Array

• Compute distance
– Sum squares of each 

dimension
• Divide into parts

• Sum each separately

• Add parts together

– Take square root

• Display result
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Using Threads

• Like running a program

– “run” instead of “main”

– takes no arguments

• Object must know what 

it is supposed to do

– Constructor

• Result stored in object

• Create object with 

portion of a, b to sum

– Constructor takes arrays 

and saves in object

• Variable in scope of 

Class

– “main” divides and 

creates objects

• run does the 

summation

– Saves result in variable
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Example:

Euclidean Distance
public class Lec3Distc extends Thread

{

public double distance = 0;

private double x[], y[]; // Arrays to compute distance on

private int begin,end; // Dimensions to compute on

public Lec3Distc(double a[], double b[],int bg, int en)

// Set up what this instance is supposed to do when it runs.

{

x = a;

y = b;

begin = bg;

end = en;

}

public void run()

// What to do when "start" is called (from Thread class)

{

distance = SumSquareDiff(x,y,begin,end);

}

public static double SumSquareDiff(double[] a, double[] b, int begin, int
end)

// Requires:  a.length = b.length; no null values in a or b

// Produces:  Euclidean distance between a and b (>0)

{

double sum = 0;

for (int i=begin; i<end; i++) {

sum = sum + (a[i]-b[i])*(a[i]-b[i]);

}

return sum;

}

public static double EuclideanDistance(double[] a, double[] b)

// Requires:  a.length = b.length; no null values in a or b

// Produces:  Euclidean distance between a and b (>=0)

{

Lec3Distc first = new 
Lec3Distc(a,b,0,(int)Math.floor(a.length/2));

Lec3Distc second = new 
Lec3Distc(a,b,(int)Math.floor(a.length/2)+1,a.length);

first.start(); // Start computation on the first half, but don't 
wait

second.start(); // Start computation on the 
second half, don't wait

try {

first.join(); // Wait for the first half to finish.

second.join(); // Wait for the second half to 
finish.

} catch(InterruptedException e) { /* Ignore */ }

return Math.sqrt(first.distance+second.distance);

}

• Rest of class (main) is unchanged

– This is Functional Abstraction in 
action!
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