
CS18000: Problem Solving And Object-

Oriented Programming

1/26/2011

© 2011 Chris Clifton, Aditya P. Mathur 1

CS18000: Problem Solving

And Object-Oriented

Programming

Types, Methods

24 January 2011

Prof. Chris Clifton

Today We Learn

• Classes and Objects vs. Primitive Types

• Functions as Abstractions

1/26/2011 CS18000 2

CS18000: Problem Solving And Object-

Oriented Programming

1/26/2011

© 2011 Chris Clifton, Aditya P. Mathur 2

Primitive Type

• Integers

– byte, short, int, long

• Rationals

– float, double

• Boolean

– boolean

• Character

– char

Class

• Number

– Byte, Short, Integer, Long

– BigInteger

• Number

– Float, Double

• Boolean

• Character

1/26/2011 CS18000 3

Primitive Types

Primitive Type

• Is a value

• int a = 3;

• Operators on value

– +, -

Class

• Create Objects

– Object has values

• Integer a = new

Integer(3);

• Has methods

– compareTo(), …

1/26/2011 CS18000 4

Primitive Type vs. Class

Integer

•value: 3

CS18000: Problem Solving And Object-

Oriented Programming

1/26/2011

© 2011 Chris Clifton, Aditya P. Mathur 3

Primitive Type vs. Class

• Primitive types are “special”
– literals (constant values)

– infix operators (+, -)

– …

• Classes used to generate objects
– double 3. vs. object of type Double containing the

value 3.

• For now, big issue is equality test
– a.equals(b) vs. a == b

– == : variables a and b refer to the same object

– Two different objects can have same value!

1/26/2011 CS18000 5

Methods

• Class has methods

– Operations on objects

– Specific to objects of

that class

• Method works with an

object

– May have arguments

– May produce result

• Functional

Abstraction

1/26/2011 CS18000 6

Integer

value: 3

MAX_VALUE: 231-1

MIN_VALUE: -231

int intValue()

float floatValue()

boolean equals(Object)

int compareTo(Integer)

CS18000: Problem Solving And Object-

Oriented Programming

1/26/2011

© 2011 Chris Clifton, Aditya P. Mathur 4

Abstraction:

How Programming Scales

• Small programs are easy to write
– You’ve done this

• Large programs a challenge
– Too much to keep track of

– We can prove it! (take CS 30700 for more…)

• Solution: Write small programs
– Combine them to form larger programs

• This only works if we don’t worry how the
small programs work!

1/26/2011 CS18000 7

Functional Abstraction

• Function provides a capability

– We use that capability

– We don’t care how it is done!

• What do we care about?

– Input required

– Output produced

• Running Example: Euclidean Distance
double EuclideanDistance(double[] a, double[] b)

1/26/2011 CS18000 8

CS18000: Problem Solving And Object-

Oriented Programming

1/26/2011

© 2011 Chris Clifton, Aditya P. Mathur 5

Array types

• What is double[] a ?
– [] is an array

– Contains a sequence of objects of that type

• Creating an array
– double [] doubleArray = new double[20];

– double [] shortArray = { 4.0, 18.5, -3.2 };

• Using values
– doubleArray[2] = 17.0;

– doubleArray[1] = doubleArray[2] * 4.0;

– Array and array index gives a value

1/26/2011 CS18000 9

Functional Specification:

Input

• What do we specify about input?

– Number of inputs

– Data type

– Permissible values

– Meaning

1/26/2011 CS18000 10

double EuclideanDistance(double[] a, double[] b)

// Requires:a.length == b.length

// no null entries in a or b

CS18000: Problem Solving And Object-

Oriented Programming

1/26/2011

© 2011 Chris Clifton, Aditya P. Mathur 6

Functional Specification:

Output

• What do we specify about output?

– Number of outputs (is input changed?

– Data type

– Permissible values

– Meaning

1/26/2011 CS18000 11

double EuclideanDistance(double[] a, double[] b)

// Requires:a.length == b.length

// no null entries in a or b

// Returns: Euclidean distance between a and b

// result > 0

CS18000: Problem Solving

And Object-Oriented

Programming

Declarations, Problem Solving

26 January 2011

Prof. Chris Clifton

CS18000: Problem Solving And Object-

Oriented Programming

1/26/2011

© 2011 Chris Clifton, Aditya P. Mathur 7

Variable Declarations

• Variables must be
declared
– Defines type variable

can hold

– Must be done before use

• Must be initialized
before use

• Use in scope of
declaration
– Statement where defined

– Generally { }

• Good Practice: Declare
at start of class/method

static void main(String[]
args) {
int i;

double gpa;

gpa = i + 4;

for (int j=0; j<5; j++) {
i = i + j;

}

j = 3;

}

1/26/2011 CS18000 13

= 0;

Problem Solving:

Euclidean Distance

• What is the problem?
– What would be a

solution?

• Steps to a solution
– Input

– Calculations

– Output

• Data representation

• Function breakdown

• Now we start coding

• Get values for a, b
– Represent as Array

• Compute distance
– Sum squares of each

dimension

– Take square root

• Display result

1/26/2011 CS18000 14

A

B
||
2

ba

CS18000: Problem Solving And Object-

Oriented Programming

1/26/2011

© 2011 Chris Clifton, Aditya P. Mathur 8

Example:

Euclidean Distance
import java.lang.Math;

import java.util.Date;

import java.util.Scanner;

public class Lec3Dist

{

public static double EuclideanDistance(double[] a,
double[] b)

// Requires: a.length = b.length; no null values in
a or b

// Produces: Euclidean distance between a and b
(>=0)

{

double distance = 0.;

for (int i=0; i<a.length; i++) {

distance = distance + (a[i]-b[i])*(a[i]-b[i]);

}

return Math.sqrt(distance);

}

public static final int DIMENSIONS = 10000000;

public static void main(String args[])

{

double[] a = new double[DIMENSIONS];

double[] b = new double[DIMENSIONS];

for (int i=0; i < DIMENSIONS; i++) {

a[i] = Math.random();

b[i] = Math.random();

}

long time = new Date().getTime();

double dist = EuclideanDistance(a,b);

time = new Date().getTime() - time;

System.out.println("Distance computed is " +
dist);

System.out.println("Distance computation took " +
time + " milliseconds");

}

}

1/26/2011 CS18000 15

Concurrency

• How can we speed this up?

– We have multiple processors, use them to
compute parts of the sum simultaneously!

• Java Thread class:

– Set up what a thread is supposed to do
(constructor)

– Start it (returns immediately)

– Do other things

– Wait for it to end and get result

1/26/2011 CS18000 16

CS18000: Problem Solving And Object-

Oriented Programming

1/26/2011

© 2011 Chris Clifton, Aditya P. Mathur 9

Problem Solving:

Euclidean Distance

• What is the problem?
– What would be a

solution?

• Steps to a solution
– Input

– Calculations

– Output

• Data representation

• Function breakdown

• Now we start coding

• Get values for a, b
– Represent as Array

• Compute distance
– Sum squares of each

dimension
• Divide into parts

• Sum each separately

• Add parts together

– Take square root

• Display result

1/26/2011 CS18000 17

A

B
||
2

ba

Using Threads

• Like running a program

– “run” instead of “main”

– takes no arguments

• Object must know what

it is supposed to do

– Constructor

• Result stored in object

• Create object with

portion of a, b to sum

– Constructor takes arrays

and saves in object

• Variable in scope of

Class

– “main” divides and

creates objects

• run does the

summation

– Saves result in variable

1/26/2011 CS18000 18

CS18000: Problem Solving And Object-

Oriented Programming

1/26/2011

© 2011 Chris Clifton, Aditya P. Mathur 10

Example:

Euclidean Distance
public class Lec3Distc extends Thread

{

public double distance = 0;

private double x[], y[]; // Arrays to compute distance on

private int begin,end; // Dimensions to compute on

public Lec3Distc(double a[], double b[],int bg, int en)

// Set up what this instance is supposed to do when it runs.

{

x = a;

y = b;

begin = bg;

end = en;

}

public void run()

// What to do when "start" is called (from Thread class)

{

distance = SumSquareDiff(x,y,begin,end);

}

public static double SumSquareDiff(double[] a, double[] b, int begin, int
end)

// Requires: a.length = b.length; no null values in a or b

// Produces: Euclidean distance between a and b (>0)

{

double sum = 0;

for (int i=begin; i<end; i++) {

sum = sum + (a[i]-b[i])*(a[i]-b[i]);

}

return sum;

}

public static double EuclideanDistance(double[] a, double[] b)

// Requires: a.length = b.length; no null values in a or b

// Produces: Euclidean distance between a and b (>=0)

{

Lec3Distc first = new
Lec3Distc(a,b,0,(int)Math.floor(a.length/2));

Lec3Distc second = new
Lec3Distc(a,b,(int)Math.floor(a.length/2)+1,a.length);

first.start(); // Start computation on the first half, but don't
wait

second.start(); // Start computation on the
second half, don't wait

try {

first.join(); // Wait for the first half to finish.

second.join(); // Wait for the second half to
finish.

} catch(InterruptedException e) { /* Ignore */ }

return Math.sqrt(first.distance+second.distance);

}

• Rest of class (main) is unchanged

– This is Functional Abstraction in
action!

1/26/2011 CS18000 19

