
CS18000: Problem Solving And Object-

Oriented Programming

4/20/2011

© 2011 Chris Clifton, Aditya P. Mathur 1

CS18000: Problem Solving

And Object-Oriented

Programming

File I/O

18 April 2011

Prof. Chris Clifton

Goal: Make Data Useful

Beyond Program Execution

• Program data stored in variables

Okay, a little more than that

– Arrays

– Linked data structures

• “Disappear” when program exits

How do we keep values around?

– Display in a GUI and write them down?

4/20/2011 CS18000 6

CS18000: Problem Solving And Object-

Oriented Programming

4/20/2011

© 2011 Chris Clifton, Aditya P. Mathur 2

Idea 1: Persistent Variables

• “Save” value of variables when program exits

– “Load them back” when program starts

• Advantage: Fits nicely with the way we think

of programming

– Changes concept of initialization

• Disadvantages

– Which variables saved?

– What if we want to use data in a different

program?

4/20/2011 CS18000 7

Idea 2:

Program-independent storage

• Save desired values in a known format

– list

– table

– …

• Load back into variables when needed

– Program knows format

– Gets appropriate values to go into desired

variables

4/20/2011 CS18000 8

CS18000: Problem Solving And Object-

Oriented Programming

4/20/2011

© 2011 Chris Clifton, Aditya P. Mathur 3

Idea 3: A mix of both

• Save in known format

– Don’t directly map values to named variables

• But known only to your own program

– Proprietary formats (e.g., Excel, Word)

• We’ll stay away from this approach

4/20/2011 CS18000 9

Basic idea: Stream abstraction

• Values written sequentially

– Write the value of name

– Write the value of address

– …

– Write the next name

• Read in same order

– Read name

– Read address

– …

4/20/2011 CS18000 10

CS18000: Problem Solving And Object-

Oriented Programming

4/20/2011

© 2011 Chris Clifton, Aditya P. Mathur 4

Why sequentially?

• History

– First storage devices

were tape drives

– Inherently sequential

• Does this still make

sense?

• Direct Access

Storage Device

– Can move to anyplace

– But faster in sequence

4/20/2011 CS18000 11

Stream as an Abstraction

• Many devices good at sequential access

– Tape drive

– Telephone line

– Satellite link

• Fewer good at truly random access

– Disks read a block, not individual byte
• Even then, sequential blocks faster

– USB flash drive seems random access
• But designed to give a block of sequential data per request

• Best if you need the whole thing

• And then there is concurrent access…

4/20/2011 CS18000 12

CS18000: Problem Solving And Object-

Oriented Programming

4/20/2011

© 2011 Chris Clifton, Aditya P. Mathur 5

Solution: Stream

• read
– Get the next value from the stream

• write
– Put a value into the stream

• skip
– Skip ahead some number of values

• reset
– Go back to the beginning

• close
– Done with this stream

4/20/2011 CS18000 13

Streams are

• Simple to understand

• Good representations of common I/O

devices

– Disks

– Networks

– Speakers

• Computationally sufficient

– You’ll learn about Turing machines

4/20/2011 CS18000 14

CS18000: Problem Solving And Object-

Oriented Programming

4/20/2011

© 2011 Chris Clifton, Aditya P. Mathur 6

Alternative:

Avoid the abstraction

• Instead of a Stream, we could use each
device using it’s own operations. This is:

A. A good idea, because we get better
performance

B. A good idea, because we might need some
special capabilities

C. A bad idea, because we are supposed to
use abstractions

D. A bad idea, because it locks our program in
to a particular device

4/20/2011 CS18000 15

Java Classes for File I/O

• File

– Has a name

– But no operations to get data

• FileOutputStream, FileInputStream

– Write, read bytes

• Scanner

– Converts character values to/from primitive

types, strings

4/20/2011 CS18000 16

CS18000: Problem Solving And Object-

Oriented Programming

4/20/2011

© 2011 Chris Clifton, Aditya P. Mathur 7

File class

• Named object

– File f = new File(“directory/file.txt”);

– String fn = f.getAbsolutePath();

– Name holds between programs

• Persistent

– Values maintained after program exits

• But not too useful by itself

– f.canRead(); f.canWrite(); f.delete();

4/20/2011 CS18000 17

OutputStream class

• OutputStream o = new FileOutputStream(f);

• o.write(int b);
– Write the byte represented by b

• Ignore parts >255

• o.write(byte[] b);
– Write the array of bytes (in order)

• o.flush();
– Make sure everything is persistent

• o.close();
– Done

4/20/2011 CS18000 18

CS18000: Problem Solving And Object-

Oriented Programming

4/20/2011

© 2011 Chris Clifton, Aditya P. Mathur 8

InputStream class

• InputStream i = new FileInputStream(f);

• int b = i.read();
– Read one byte and place in b

• int count = i.read(byte[] b);
– read b.length() bytes into b

– If not enough to read, count < b.length

• i.reset()
– Go back to the beginning

• long skipped = i.skip(long n);
– Skip ahead n bytes (if not enough, skipped<n)

• i.close();
– Done

4/20/2011 CS18000 19

Scanner class

• Scanner s = new Scanner(f);

• String st = s.next();

– Get the next space-terminated string

• int I = s.nextInt();

• float f = s.nextFloat();

• …

• PrintWriter class used to write values to be

read with a Scanner

4/20/2011 CS18000 20

CS18000: Problem Solving And Object-

Oriented Programming

4/20/2011

© 2011 Chris Clifton, Aditya P. Mathur 9

A stream is like:

A. An Array
– Items in sequence starting from the beginning

– Can’t remove something from the middle

B. A Linked List
A. Can’t “jump around”, must access in order

C. Both

D. Neither

4/20/2011 CS18000 21

CS18000: Problem Solving

And Object-Oriented

Programming

Buffered I/O, Network I/O

20 April 2011

Prof. Chris Clifton

CS18000: Problem Solving And Object-

Oriented Programming

4/20/2011

© 2011 Chris Clifton, Aditya P. Mathur 10

(Generic) Stream Operations

• open
– Make ready for reading (at

beginning), writing (at
beginning or at end)

– Generally done by a
Stream constructor in Java

• read / write
– Get data from stream or put

data on stream

• skip
– Move ahead (or back)

some distance in stream

– Equivalent to reading and
throwing away what is read

• reset
– Move to beginning of

stream

• flush
– Make sure data sent to

stream

– Used only when writing

• close
– Make sure data sent to

stream

– Stream can’t be used
without “open”ing again

– Others may use stream

4/20/2011 CS18000 23

I/O Latency Issues

• Devices normally read blocks

– Typically 512 – 8192 bytes

– Is your program ready for all that?

• Suppose you need one int (4 bytes)

– Stream has device read the block to get
it

• Then need the next int

– Stream has device read the block again

• Fast disks read 140KB/millisecond

– But up to 8 milliseconds to get back to
the same block

4/20/2011 CS18000 24

CS18000: Problem Solving And Object-

Oriented Programming

4/20/2011

© 2011 Chris Clifton, Aditya P. Mathur 11

Solution: Buffered I/O

• Stream reads an entire
block (or more)
– Saves it in memory

– When you ask for the
next byte, you get it

– When you ask for a byte
that isn’t there, get the
next block

• Dramatic performance
improvements
– But not always invisible

to program

4/20/2011 CS18000 25

Buffered I/O

• Where is the buffering done?

A. Do it yourself?

B. Scanner object?

C. FileInputStream object?

D. Java Virtual Machine?

E. Disk?

• Answer: Yes

4/20/2011 CS18000 26

CS18000: Problem Solving And Object-

Oriented Programming

4/20/2011

© 2011 Chris Clifton, Aditya P. Mathur 12

Challenge: Multiple Buffers

• Okay as long as one reader or writer

– Each goes to buffer at next layer

• But what if multiple readers?

– Scanner s1 reads from file f

– Scanner s2 reads from file f

• s1 will get more than it needs

– s2 will “miss” data not yet “used” by s1

4/20/2011 CS18000 27

Issues with Buffered I/O

• A Scanner can check if the next value is a

Float, Integer, etc. without reading it. To

do this, it

A. must use buffered I/O,

B. probably uses buffered I/O, or it would be to

slow to check then go back to get the next

value, or

C. Does not use buffered I/O, since what is in

the buffer might change after it is checked.

4/20/2011 CS18000 28

CS18000: Problem Solving And Object-

Oriented Programming

4/20/2011

© 2011 Chris Clifton, Aditya P. Mathur 13

Solution: Single object

accesses each stream

• FileInputStream fis = new
FileInputStream(“abc.txt”);

– No other object should use file abc.txt

– If another method needs to read abc.txt, pass
it fis

• Or make an instance variable of the class

• Use only single abstraction to access
stream

– If using a Scanner, don’t access call methods
of the InputStream once Scanner instantiated

4/20/2011 CS18000 29

Network I/O

• Network connection is a stream

– One end writes data (OutputStream)

– Other end reads data (InputStream)

– Some network connections have both

• Can use higher-level abstractions

– Scanner

– Printwriter

4/20/2011 CS18000 30

CS18000: Problem Solving And Object-

Oriented Programming

4/20/2011

© 2011 Chris Clifton, Aditya P. Mathur 14

Network I/O: Socket

• Endpoint of network stream

• Analogous to File class (but not quite)

– FileInputStream constructed using a File

– Socket has getInputStream(),

getOutputStream()

• new Socket(“www.cs.purdue.edu”, 80);

– Creates a (2-way) connection to given

address

4/20/2011 CS18000 31

Network I/O: Use

• Constructing the socket opens an
InputStream and OutputStream

• Read/Write using whatever tools you want

– Read/Write bytes directly on stream

– Build Scanner on InputStream, PrintWriter on
OutputStream

• I/O is buffered

• Close when done

– Closing streams separate from closing socket

4/20/2011 CS18000 32

CS18000: Problem Solving And Object-

Oriented Programming

4/20/2011

© 2011 Chris Clifton, Aditya P. Mathur 15

Stream operations on a

Network

• reset on a network stream

A. should reload the web page

B. should cause the next byte read to be the

first byte sent

C. should close the network connection

D. doesn’t make sense

4/20/2011 CS18000 33

Blocking I/O

• What if there is nothing to read?

– File: This is an “end of file”

– Network (or keyboard): the input may not be finished

• End-of-file only occurs when other end explicitly
closed

• Blocking I/O: wait for input

– Wait until enough bytes come in to fulfill read
(e.g., a complete integer and terminator/space)

– Then return

• Also non-blocking I/O: Exception if nothing to read

4/20/2011 CS18000 34

CS18000: Problem Solving And Object-

Oriented Programming

4/20/2011

© 2011 Chris Clifton, Aditya P. Mathur 16

Network I/O: Server

• What if we don’t know who will connect?

– E.g., web server

• Solution: Listener

– new ServerSocket(80); // Listen on port 80

• accept() method waits

– returns a Socket when someone connects

4/20/2011 CS18000 35

