
CS18000: Problem Solving And Object-

Oriented Programming

4/4/2011

© 2011 Chris Clifton, Aditya P. Mathur 1

CS18000: Problem Solving

And Object-Oriented

Programming

Graphical User Interfaces

4 April 2011

Prof. Chris Clifton

GUIs

10/20/2010 ©Aditya Mathur. CS 180. 3

CS18000: Problem Solving And Object-

Oriented Programming

4/4/2011

© 2011 Chris Clifton, Aditya P. Mathur 2

Why GUIs?

Learn about:

• Abstraction

– Do you really want to think about each pixel,

moving things about the screen, etc?

• Concurrency

– Multiple windows must be able to be used

simultaneously

• Exceptions

• Event-based programming

4/4/2011 CS18000 4

Basic Abstractions

• Display Element: JFrame

– Basic window

– Contains other display elements

• Input processing: ActionEvent

– What to do when input occurs

• Relating the two: ActionListener

– Contained by a display element

– Causes an ActionEvent to occur

4/4/2011 CS18000 5

CS18000: Problem Solving And Object-

Oriented Programming

4/4/2011

© 2011 Chris Clifton, Aditya P. Mathur 3

A simple GUI: Frame

©Aditya Mathur. CS 180. Fall

2010. Week 9

6

Title

Color

Border

What is a Frame?

• Empty window

– Title (if window manager uses it)

– size

– location

– Menu, Cursor, Icon Image, Decorations
(close/iconify), …

• Properties

– What to do when closed

• Contents

4/4/2011 CS18000 7

CS18000: Problem Solving And Object-

Oriented Programming

4/4/2011

© 2011 Chris Clifton, Aditya P. Mathur 4

Simple example:

Creating a JFrame
import javax.swing.*;

public class Frame {

public static void main(String[] args) {
JFrame justAFrame = new JFrame("Just a frame");

justAFrame.setSize(200,125);

justAFrame.setLocation(100,100);

justAFrame.setVisible(true);

justAFrame.dispose();

System.out.println("Done.");

} }

4/4/2011 CS18000 8

Must Frame extend JFrame?
A. Yes, it needs to extend it to use it.

B. Yes, as otherwise it isn’t a part of a GUI.

C. No, it can use a JFrame object

D. No, because it has a main()

Getting Rid of a Window

• setVisible(false);

– Window can’t be seen

– But it still exists

• dispose();

– Window can’t be used

– But can be re-enabled

with “pack” or “show”

• Window manager

closes window

– Action determined by

DefaultCloseOperation

• setDefaultCloseOperation

– DO_NOTHING_ON_CLOSE

– HIDE_ON_CLOSE

– DISPOSE_ON_CLOSE

– EXIT_ON_CLOSE

4/4/2011 CS18000 9

CS18000: Problem Solving And Object-

Oriented Programming

4/4/2011

© 2011 Chris Clifton, Aditya P. Mathur 5

Window Contents

• What goes in a window? Components

– JButton

– JTextArea

– Widgets

– …

• Normally create a JPanel and add

components to it

– Then add panel(s) to frame

4/4/2011 CS18000 10

A simple GUI: Frame with a

Panel and Four Buttons

11

Button label

Button

ButtonButton

Button

Panel

Background color

CS18000: Problem Solving And Object-

Oriented Programming

4/4/2011

© 2011 Chris Clifton, Aditya P. Mathur 6

Window Layout

• Abstraction: Don’t specify details of layout

• Panel has a LayoutManager

– FlowLayout

– BoxLayout

– …

• Layout based on order components added

– Some LayoutManagers have additional hints

• Default FlowLayout is left-to-right then top-
to-bottom

4/4/2011 CS18000 12

Creating a Window

• Create a Frame

– Optionally set size, position, on-close action

• Create a panel

– Choose layout methodology

– Create and add components to the panel

• Add panel to frame

• (optional) pack() frame to set window size

• Set visible

4/4/2011 CS18000 13

CS18000: Problem Solving And Object-

Oriented Programming

4/4/2011

© 2011 Chris Clifton, Aditya P. Mathur 7

Next: Components with

actions

• Component has listener

– waits for event to occur

– executes method when it does

• Easy to use

– simply define appropriate methods

• But need to be careful

– Think like concurrent programs

4/4/2011 CS18000 14

Window:

4/4/2011 CS18000 16

JFrame:

•Title

•Default Close Operation

•Decorations?

•Visible?

•iconImage

•(several other properties)

JPanel:

•LayoutManager

•UI (look and feel)

•JComponents

JButton

JPopoupMenu

Jmenuitem

JTextArea
J

S

c

r

o

l

l

b

a

r

CS18000: Problem Solving And Object-

Oriented Programming

4/4/2011

© 2011 Chris Clifton, Aditya P. Mathur 8

Components with actions

• Component isn’t just about looking good

– Needs to accept (user) interaction

• Acting on the component generates Event

– MouseEvent – button press, release; enter

object; leave object

– KeyEvent – Key Pressed, Key Released

• But how do we find out about the event?

4/4/2011 CS18000 17

ActionListener

• Listen for event

– When event occurs, method in listener will be

executed

– This method can do whatever is needed

• ActionListener is an Interface

– Requires one method:

actionPerformed(ActionEvent e);

– You define class with appropriate

actionPerformed

4/4/2011 CS18000 18

CS18000: Problem Solving And Object-

Oriented Programming

4/4/2011

© 2011 Chris Clifton, Aditya P. Mathur 9

Simple listener

class NoticeEvent implements ActionListener {
private String listenerName = null;

public NoticeEvent(String name) {
listenerName = name;

}

public void actionPerformed(ActionEvent e) {
System.out.println(“Listener ” + listenerName +

“: ” + e.getActionCommand() +
“ occurred at ” + e.getWhen() +
“ with parameters ” + e.paramString());

} }

4/4/2011 CS18000 19

Using a listener

• Must add listener to the object

– What events cause action set by the object

– Listener can also look at the event to decide

what action should be

– Some objects may have multiple listeners

4/4/2011 CS18000 20

JButton

•text

•disabled?

NoticeEvent

•name “a”

NoticeEvent

•name “b”

ActionListener

…

The JButton object stores elements as a:
A. Linked List, because we don’t know how many it may have

B. Array, because it is simpler.

C.Who cares? We just need to add and remove listeners!

D.Linked List, because not all the listeners are the same.

CS18000: Problem Solving And Object-

Oriented Programming

4/4/2011

© 2011 Chris Clifton, Aditya P. Mathur 10

Example

JFrame window = new JFrame(“Examp”);

Jbutton button = new JButton(“Example”);

ActionEvent a = new NoticeEvent(“ex”);

button.addActionListener(a);

JPanel panel = new JPanel();

panel.add(button);

window.add(panel);

window.pack();

window.setVisible(true);

4/4/2011 CS18000 21

Question:

Are GUIs really concurrent?

• It seems like things are “just happening”

– Similar to concurrent threads

• Program doesn’t end without window

finishing

– Similar to concurrent threads

• Is it really the same?

– Exercise: Test and find out

4/4/2011 CS18000 22

