
Sec. 13.8 Delta List Implementation 241

13.9 Putting A Process To Sleep

An application does not call insertd, nor does the application access the sleep
queue directly. Instead, an application invokes system call sleep or sleepms to request a
delay. The only difference between the two functions is the granularity of their argu-
ments. An argument to sleepms specifies a delay in milliseconds, the smallest granular-
ity delay that is possible when a clock interrupts every millisecond. An argument to
sleep specifies a delay in seconds, which is easier to use in some cases. For example, a
delay visible to a human is often expressed in seconds rather than milliseconds.

To avoid duplicating code, function sleep multiplies its argument by 1000 and in-
vokes sleepms. The only interesting aspect of sleep is a check on its argument size: to
avoid integer overflow, sleep limits the delay to a value that can be represented as a
32-bit integer. If the caller specifies a larger value, sleep returns SYSERR.

On a 32-bit processor, measuring delay in milliseconds provides an adequate range
of delay for most applications. A 32-bit integer accommodates delays over 596 hours
(24.8 days). Delays longer than 24.8 days can be managed by having a process repeat-
edly sleep for many days, awaken, check the time, and sleep again. On embedded sys-
tems that use 16-bit integers, however, millisecond delays mean that a caller can only
express a delay of thirty-two seconds. Such systems seldom have much memory or
processing power, so using a process to manage longer delays may not be feasible.
Therefore, an operating system designed for a slow, 16-bit processor may choose a
larger granularity for clock interrupts (e.g., tenths of seconds instead of milliseconds).
If the clock generates interrupts every tenth of a second, a sleep function must be
changed to measure delays in tenths of seconds.

The choice of delay granularity may also be limited by the speed of the processor.
Handling clock interrupts can take a surprising amount of time because they never stop,
even when no processes are sleeping. If a clock interrupts too fast, a processor will
spend most of its time handling clock interrupts. Fortunately, processors have become
extremely fast. As processor speeds increased, it became possible to increase the rate of
clock interrupts, allowing the granularity of delays to decrease. Thus, the fastest pro-
cessors allow microsecond delays.

Consider the state of a sleeping process. We said that to delay a process, sleepms
inserts the process into the delta list of sleeping processes. When it has been moved to
the list of sleeping processes, the process is no longer ready or current. In what state
should it be placed? Sleeping differs from suspension, waiting to receive a message, or
waiting for a semaphore. Thus, because none of the existing states suffices, a new proc-
ess state must be added to the design. We call the new state sleeping, and denote it
with symbolic constant PR_SLEEP. Figure 13.2 illustrates state transitions that include
the sleeping state.

242 Real-time Clock Management Chap. 13

READY CURRENT

resched

resched

SUSPENDED
suspendresume

suspend

create

WAITING
waitsignal

RECEIVING
receivesend

SLEEPING
sleepwakeup

Figure 13.2 State transitions including the sleeping state.

The implementation of sleepms, shown below in file sleep.c, includes a special
case: if a process specified a delay of zero, sleepms does not delay the process, but calls
resched immediately. Otherwise, sleepms uses insertd to insert the current process in
the delta list of sleeping processes, changes the state to sleeping, and calls resched to al-
low other processes to execute.

/* sleep.c - sleep sleepms */

#include <xinu.h>

#define MAXSECONDS 2147483 /* Max seconds per 32-bit msec */

Sec. 13.9 Putting A Process To Sleep 243

/*--

* sleep - Delay the calling process n seconds

*--

*/

syscall sleep((

int32 delay /* Time to delay in seconds */

))

{

if ((((delay < 0)) || ((delay > MAXSECONDS)))) {

return SYSERR;

}

sleepms((1000*delay));

return OK;

}

/*--

* sleepms - Delay the calling process n milliseconds

*--

*/

syscall sleepms((

int32 delay /* Time to delay in msec. */

))

{

intmask mask; /* Saved interrupt mask */

if ((delay < 0)) {

return SYSERR;

}

if ((delay == 0)) {

yield(());

return OK;

}

/* Delay calling process */

mask = disable(());

if ((insertd((currpid, sleepq, delay)) == SYSERR)) {

restore((mask));

return SYSERR;

}

proctab[currpid].prstate = PR_SLEEP;

resched(());

restore((mask));

return OK;

}

