
90 Scheduling And Context Switching Chap. 5

One might expect the context switch code on a RISC machine to start with a series
of statements that each push one register:

push r3
push r4
push r5
push r6
push r7
push r8
push r9
push r10
push r11
push r12
push lr

and to end with a series of statements that each pop one register:

pop lr
pop r12
pop r11
pop r10
pop r9
pop r8
pop r7
pop r6
pop r5
pop r4
pop r3

Interestingly, the code does not contain such sequences. The reason is that
although it is a RISC machine, the ARM processor has a single instruction that can save
multiple registers. That is, an instruction can push multiple registers onto the stack or
can pop multiple registers from a stack. However, instructions that operate on multiple
registers take multiple cycles, just as in a CISC machine. As with the Intel processor,
registers are popped in the opposite order than they are pushed.

In the code, the opcodes used to save and restore registers are push and pop. The
underlying instruction takes a 16-bit mask, where each bit corresponds to one register.
When a programmer codes:

push {r0-r11, lr}

the assembler generates an instruction with the bit mask set for registers 0 through 11
and the link register, r14. Thus 13 values will be pushed on the stack. The correspond-
ing pop instruction must specify exactly the same set of registers. File ctxsw.S contains
the code.


