Sec. 4.9 List Initialization 71
/* newqueue.c - newqueue */

#i ncl ude <xi nu. h>

[% o e e e e e e e e e mmmmeeaao-
* newqueue - Allocate and initialize a queue in the global queue table
*/

gi d16 newgueue(voi d)

{

static qi dl6 nextqi d=NPROC, /* Next list in queuetab to use */
gi d16 q; /* 1D of allocated queue */
g = nextqid;
if (g >= NQGENT) { /* Check for table overflow */
return SYSERR
}
nextqid += 2; /* Increment index for next call*/
/* Initialize head and tail nodes to forman enpty queue */
queuet ab[queuehead(q)]. gnext = queuetail (q);
queuet ab[queuehead(q)] . gprev = EMPTY;
queuet ab[queuehead(q)] . gkey = MAXKEY
queuet ab[queuet ai | (g)]. gnext = EMPTY;
queuet ab[queuet ai | (g)]. gprev = queuehead(q);
queuet ab[queuetai | (g)].gkey = M NKEY
return q
}

4.10 Perspective

Using a single data structure for process lists makes it possible to create general-
purpose linked list manipulation functions, which reduce the size of the code by avoid-
ing duplication. Using an implicit data structure with relative pointers reduces the
memory used. For small embedded systems, compacting code and data is necessary.
What about systems that have plenty of memory? Interestingly, a genera principle ap-
plies. unless care is taken, successive generations of software expand to fill whatever
memory is available. Thus, thinking carefully about a design is always important: there
are never sufficient resources to justify wasteful inefficiency.

