
Sec. 15.5 Request Queues And Buffers 291

–
–

Q

W

E
RT

Y

U

–

–
–

– – Q W E R T Y U – – –

next item
to send
(head)

next slot
to fill
(tail)

next item
to send
(head)

next slot
to fill
(tail)

(a) (b)

Figure 15.2 (a) A circular output buffer acting as a queue, and (b) the imple-
mentation with an array of bytes.

Output functions deposit characters to be sent in the output buffer and return to
their caller. When it places characters in the output buffer, an upper-half function must
also start output interrupts on the device. Whenever the device generates an output in-
terrupt, the lower half extracts up to sixteen characters from the output buffer, and depo-
sits the characters in the device’s output FIFO.† Once all characters in the output FIFO
have been transmitted, the device will interrupt again. Thus, output continues until the
output buffer becomes empty at which time the driver stops output and the device be-
comes idle.

Input works the other way around. Whenever it receives characters, the device in-
terrupts and the interrupt dispatcher calls a lower-half function (i.e., ttyhandler). The
interrupt handler extracts the characters from the device’s input FIFO and deposits them
in the circular input buffer. When a process calls an upper-half function to read input,
the upper-half function extracts characters from the input buffer.

Conceptually, the two halves of a driver only communicate through shared buffers.
Upper-half functions place outgoing data in a buffer and extract incoming data from a
buffer. The lower half extracts outgoing data from the buffer and sends it to the device,
and places incoming data in the buffer. To summarize:

Upper-half functions transfer data between processes and buffers; the
lower half transfers data between buffers and the device hardware.

15.6 Synchronization Of Upper Half And Lower Half

In practice, the two halves of the driver usually need to do more than manipulate a
shared data structure. For example, an upper-half function may need to start an output
transfer if a device is idle. More important, the two halves need to coordinate opera-
tions on the request queue and the buffers. For example, if all slots in the output buffer
are full when a process tries to write data, the process must be blocked. Later, when
characters have been sent to the device and buffer space becomes available, the blocked

33333333333333333333333333333333

†To improve efficiency, most UART hardware has a small on-board character buffer that can hold up to
16 outgoing characters at a time.

