
Sec. 13.8 Delta List Implementation 239

13.8 Delta List Implementation

An overarching goal of operating systems designers arises from the desire to
achieve maximal functionality with minimal mechanism. Designs that provide powerful
functionality with minimal overhead are valued. To achieve such goals, designers look
for ways to create underlying mechanisms that accommodate multiple functions. In the
case of delta lists, we will see that it is possible to use the basic list data structure
covered in Chapter 4. That is, the delta list of delayed processes will reside in the
queuetab structure, just like other lists of processes.

Conceptually, the processing required for a delta list is straightforward. Global
variable sleepq contains the queue ID of the delta list for sleeping processes. On each
clock tick, the clock interrupt handler examines the queue of sleeping processes, and de-
crements the key on the first item if the queue is nonempty. If the key reaches zero, the
delay has expired and the process must be awakened. To awaken a process, the clock
handler calls function wakeup.

Functions to manipulate a delta list seem straightforward, but the implementation
can be tricky. Therefore, a programmer must pay close attention to details. Function
insertd takes three arguments: a process ID, pid, a queue ID, q, and a delay given by ar-
gument key. Insertd finds the location on the delta list where the new process should be
inserted and links the process into the list. In the code, variable next scans the delta list
searching for the place to insert the new process. File insertd.c contains the code.

Observe that the initial value of argument key specifies a delay relative to the
current time. Thus, argument key can be compared to the key in the first item on the
delta list. However, successive keys in the delta list specify delays relative to their
predecessor. Thus, the key in successive nodes on the list cannot be compared directly
to the value of argument key. To keep the delays comparable, insertd subtracts the rela-
tive delays from key as the search proceeds, maintaining the following invariant:

At any time during the search, both key and queuetab[next].qkey
specify a delay relative to the time at which the predecessor of “next”
awakens.

Although insertd checks for the tail of the list explicitly during the search, the test
could be removed without affecting the execution. To understand why, recall that the
key value in the tail of a list is assumed to be greater than any key being inserted. As
long as the assertion holds, the loop will terminate once the tail has been reached. Be-
cause insertd does not check its argument, keeping the test provides a safety check.

After it has identified a location on the list where the relative delay of the item be-
ing inserted is smaller than the relative delay of an item on the list, insertd links the
new item into the list. Insertd must also subtract the extra delay that the new item in-
troduces from the delay of the rest of the list. To do so, insertd decrements the key in
the next item on the list by the key value being inserted. The subtraction is guaranteed

