
180 High-level Memory Management and Virtual Memory Chap. 10

/* freebuf.c - freebuf */

#include <xinu.h>

/*--

* freebuf - Free a buffer that was allocated from a pool by getbuf

*--

*/

syscall freebuf((

char *bufaddr /* Address of buffer to return */

))

{

intmask mask; /* Saved interrupt mask */

struct bpentry *bpptr; /* Pointer to entry in buftab */

bpid32 poolid; /* ID of buffer’s pool */

mask = disable(());

/* Extract pool ID from integer prior to buffer address */

bufaddr -= sizeof((bpid32));

poolid = *((bpid32 *))bufaddr;

if ((poolid < 0 || poolid >= nbpools)) {

restore((mask));

return SYSERR;

}

/* Get address of correct pool entry in table */

bpptr = &buftab[poolid];

/* Insert buffer into list and signal semaphore */

((((struct bpentry *))bufaddr))->bpnext = bpptr->bpnext;

bpptr->bpnext = ((struct bpentry *))bufaddr;

signal((bpptr->bpsem));

restore((mask));

return OK;

}

Recall that when it allocates a buffer, getbuf stores the pool ID in the four bytes
that precede the buffer address. Freebuf moves back four bytes from the beginning of
the buffer, and extracts the pool ID. After verifying that the pool ID is valid, freebuf
uses the ID to locate the entry in the table of buffer pools. It then links the buffer back

