
Module IX

Low-Level Memory Management

Xinu – module 9 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Low-Level
Memory Management

Location Of Low-Level Memory Management In The Hierarchy

Xinu – module 9 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Apparent Impossibility Of
A Hierarchical OS Design

d A process manager uses the memory manager to allocate space for a process

d A memory manager uses the device manager to page or swap to disk

d A device manager uses the process manager to block and restart processes when they
request I/ O

d Solution: divide the memory manager into two parts

Xinu – module 9 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Two Types Of Memory Management

d Low-level memory manager

– Manages memory within the kernel address space

– Used to allocate address spaces for processes

– Treats memory as a single, exhaustible resource

– Positioned in the hierarchy below process manager

d High-level memory manager

– Manages pages within a process’s virtual address space

– Positioned in the hierarchy above the device manager

– Divides memory into abstract resources

Xinu – module 9 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Conceptual Uses Of A
Low-Level Memory Manager

d Allocate stack space for a process

– Performed by the process manager when a process is created

– The memory manager must include functions to allocate and free stacks

d Allocation of heap storage

– Performed by the device manager (buffers) and other system facilities

– The memory manager must include functions to allocate and free heap space

Xinu – module 9 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Low-Level Memory Manager

d Two functions control allocation of stack storage

addr = getstk(numbytes);

freestk(addr, numbytes);

d Two functions control allocation of heap storage

addr = getmem(numbytes);

freemem(addr, numbytes);

d Memory is allocated until none remains

d Only getmem /freemem are intended for use by Xinu application processes;
getstk / freestk are restricted to the OS

Xinu – module 9 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Principle Regarding Memory Allocation

d If an operating system dynamically allocates memory to service a system call

– The OS becomes vulnerable to malicious code

– The system may run out of memory and malfunction

d General principle:

Whenever possible, avoid dynamic memory allocation
inside the operating system by using static data
structures to hold operating system variables; never
allow an application to force the system to allocate
memory.

Xinu – module 9 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Well-Known Memory Allocation Strategies

d Stack and heap can be

– Allocated from the same free area

– Allocated from separate free areas

d The memory manager can use a single free list and follow a paradigm of

– First-fit

– Best-fit

– The free list can be circular with a roving pointer

d The memory manager can maintain multiple free lists

– By exact size (static / dynamic)

– By range

Xinu – module 9 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Well-Known Memory Allocation Strategies
(continued)

d The free list can be kept in a hierarchical data structure (e.g., a tree)

– Binary sizes of nodes can be used

– Other sequences of sizes are also possible (e.g., Fibonacci)

d To handle repeated requests for the same size blocks, a cache can be combined with any
of the above methods

Xinu – module 9 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Practical Considerations

d Sharing

– A stack can never be shared

– Multiple processes may share access to a given block allocated from the heap

d Persistence

– A stack is associated with one process, and is freed when the process exits

– An item allocated from a heap may persist longer than the process that created it

d Stacks tend to be one size, but heap requests vary in size

d Fragmentation can occur

Xinu – module 9 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Memory Fragmentation

d Can occur if processes allocate and then free arbitrary-size blocks

d Symptom: after many requests to allocate and free blocks of memory, small blocks of
allocated memory exist between blocks of free memory

d The problem: although much of the memory is free, each block on the free list is small

d Example

– Assume a free memory consists of 1 Gigabyte total

– A process allocates 1024 blocks of one Megabyte each (a total of 1 Gigabyte)

– The process then frees every other block

– Although 512 Megabytes of free memory are available, the largest free block is only
1 Megabyte

Xinu – module 9 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Low-Level Allocation Scheme

d All free memory is treated as one resource

d A single free list is used for both heap and stack allocation

d The free list is

– Ordered by increasing address

– Singly-linked

– Initialized at system startup to contain all free memory

d The Xinu allocation policies

– Heap allocation uses the first-fit approach

– Stack allocation uses the last-fit approach

– The design results in two conceptual pools of memory

Xinu – module 9 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Consequence Of The Xinu Allocation Policy

STACK1STACK2STACK3TEXT DATA BSS FREE

heap
allocation

stack
allocation

d The first-fit policy means heap storage is allocated from lowest part of free memory

d The last-fit policy means stack storage is allocated from the highest part of free memory

d Note: because stacks tend to be uniform size, there is higher probability of reuse and
lower probability of fragmentation

Xinu – module 9 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Protecting Against Stack Overflow

d Note that the stack for a process can grow downward into the stack for another

d Some memory management hardware supports protection

– The memory for a process stack is assigned the process’s protection key

– When a context switch occurs, the processor protection key is set

– If a process overflows its stack, hardware will raise an exception

d If no hardware protection is available

– Mark the top of each stack with a reserved value

– Check the value when scheduling

– The approach provides a little protection against overflow

Xinu – module 9 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Memory Allocation Granularity

d Facts

– Memory is byte addressable

– Some hardware requires alignment

* For a process stack

* For I / O buffers

* For pointers

– Free memory blocks are kept on free list

– One cannot allocate / free an individual byte of memory efficiently

d Solution: choose a minimum granularity and round all requests to the minimum

Xinu – module 9 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Example Code To Round Memory Requests

/* excerpt from memory.h */
#define PAGE_SIZE 4096

/*--
* roundmb, truncmb - Round or truncate address to memory block size
*--
*/

#define roundmb(x) (char *)((7 + (uint32)(x)) & (~7))
#define truncmb(x) (char *)(((uint32)(x)) & (~7))

d Note the efficient implementation

– The size of memblk is chosen to be a power of 2

– The code implements rounding and truncation with bit manipulation

Xinu – module 9 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Xinu Free List

d Employs a well-known trick: to link together a list of free blocks, place all pointers in
the blocks themselves

d Each block on the list contains

– A pointer to the next block

– An integer giving the size of the block

d A fixed location (variable memlist) contains a pointer to the first block on the list

d Look again at the definitions in memory.h

Xinu – module 9 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Declarations For The Free List

/* excerpt from memory.h */

struct memblk { /* See roundmb & truncmb */
struct memblk *mnext; /* Ptr to next free memory blk */
uint32 mlength; /* Size of blk (includes memblk)*/
};

extern struct memblk memlist; /* Head of free memory list */
extern void *minheap; /* Start of heap */
extern void *maxheap; /* Highest valid heap address */

d Struct memblk defines the two items stored in every block on the free list

– A pointer to the next free block

– The size of the current block

d Variable memlist is the head of the free list

d Making the head of the list have the same structure as other nodes reduces special cases
in the code

Xinu – module 9 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Illustration Of Xinu Free List

memlist in bss segment

16 24 32 16 40128

40 bytes

d Free memory blocks are used to store list pointers

d Items on the list are ordered by increasing address

d All allocations rounded to size of struct memblk

d As the last node shows, the length includes the bytes used by the header

d The length in memlist counts total free memory bytes

Xinu – module 9 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Allocation Technique

d Round up the request to a multiple of sizeof(memblk)

d Walk the free memory list

d Choose either

– First free block that is large enough (getmem)

– Last free block that is large enough (getstk)

d If a free block is larger than the request, extract a piece for the request and leave the
part that is left over on the free list

– For getmem, allocate the lowest addresses in the block

– For getstk, allocate the highest addresses in the block

Xinu – module 9 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

When Searching The Free List

d Use two pointers that point to two successive nodes on the list

d An invariant controls the pointers during the search

– Pointer curr points to a node on the free list (or NULL, if at the end of the list)

– Pointer prev points to the previous node (or memlist, if at the beginning of the list)

d The invariant is established initially by making prev point to memlist and making curr
point to the item to which memlist points

d The invariant must be maintained each time pointers move along the list

Xinu – module 9 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Getmem (Part 1)

/* getmem.c - getmem */

#include <xinu.h>

/*--
* getmem - Allocate heap storage, returning lowest word address
*--
*/

char *getmem(
uint32 nbytes /* Size of memory requested */

)
{

intmask mask; /* Saved interrupt mask */
struct memblk *prev, *curr, *leftover;

mask = disable();
if (nbytes == 0) {

restore(mask);
return (char *)SYSERR;

}

nbytes = (uint32) roundmb(nbytes); /* Use memblk multiples */

Xinu – module 9 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Getmem (Part 2)

prev = &memlist;
curr = memlist.mnext;
while (curr != NULL) { /* Search free list */

if (curr->mlength == nbytes) { /* Block is exact match */
prev->mnext = curr->mnext;
memlist.mlength -= nbytes;
restore(mask);
return (char *)(curr);

} else if (curr->mlength > nbytes) { /* Split big block */
leftover = (struct memblk *)((uint32) curr +

nbytes);
prev->mnext = leftover;
leftover->mnext = curr->mnext;
leftover->mlength = curr->mlength - nbytes;
memlist.mlength -= nbytes;
restore(mask);
return (char *)(curr);

} else { /* Move to next block */
prev = curr;
curr = curr->mnext;

}
}
restore(mask);
return (char *)SYSERR;

}

Xinu – module 9 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Splitting A Block

d Occurs when getmem chooses a block that is larger then the requested size

d Getmem performs three steps

– Compute the address of the piece that will be left over (i.e., the right-hand side of
the block)

– Link the leftover piece into the free list

– Return the original block to the caller

d Note: the address of the leftover piece is curr + nbytes (the addition must be performed
using unsigned arithmetic because the high-order bit may be on)

Xinu – module 9 25 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Illustration Of How getmem Splits A Block

x y z

x l z

(a)

(b)

allocated

d Diagram (a) shows three nodes on a free list

d Diagram (b) shows the list after getmem has split the second block into an allocated
piece and a piece that remains on the free list

Xinu – module 9 26 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Illustration Of How getstk Splits A Block

x y z

x l z

(a)

(b)

allocated

d Unlike getmem, getstk must allocate the highest memory addresses that satisfy a
request.

d So, if it splits a block, getstk allocates the highest part of block and leaves the lower
part of the block on the free list

Xinu – module 9 27 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Deallocation Technique

d Round up the specified size to a multiple of memory blocks (allows the user to specify
the same value during deallocation that was used during allocation)

d Walk the free list, using next to point to a block on the free list, and prev to point to the
previous block (or memlist)

d Stop when the address of the block being freed lies between prev and next

d Either: insert the block into the list or handle coalescing

Xinu – module 9 28 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Coalescing Blocks

d The term coalescing refers to the opposite of splitting

d Coalescing occurs when a block being freed is adjacent to an existing free block

d Technique: instead of adding the new block to the free list, combine the new and
existing block into one larger block

d Important idea:

When adding a block to the free list, the memory manager must check to see whether
the new block is only adjacent to the previous block, only adjacent to the next block, or
adjacent to both.

Xinu – module 9 29 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Freemem (Part 1)
/* freemem.c - freemem */

#include <xinu.h>

/*--
* freemem - Free a memory block, returning the block to the free list
*--
*/

syscall freemem(
char *blkaddr, /* Pointer to memory block */
uint32 nbytes /* Size of block in bytes */

)
{

intmask mask; /* Saved interrupt mask */
struct memblk *next, *prev, *block;
uint32 top;

mask = disable();
if ((nbytes == 0) || ((uint32) blkaddr < (uint32) minheap)

|| ((uint32) blkaddr > (uint32) maxheap)) {
restore(mask);
return SYSERR;

}

nbytes = (uint32) roundmb(nbytes); /* Use memblk multiples */
block = (struct memblk *)blkaddr;

Xinu – module 9 30 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Freemem (Part 2)

prev = &memlist; /* Walk along free list */
next = memlist.mnext;
while ((next != NULL) && (next < block)) {

prev = next;
next = next->mnext;

}

if (prev == &memlist) { /* Compute top of previous block*/
top = (uint32) NULL;

} else {
top = (uint32) prev + prev->mlength;

}

/* Ensure new block does not overlap previous or next blocks */

if (((prev != &memlist) && (uint32) block < top)
|| ((next != NULL) && (uint32) block+nbytes>(uint32)next)) {

restore(mask);
return SYSERR;

}

memlist.mlength += nbytes;

Xinu – module 9 31 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Freemem (Part 3)

/* Either coalesce with previous block or add to free list */

if (top == (uint32) block) { /* Coalesce with previous block */
prev->mlength += nbytes;
block = prev;

} else { /* Link into list as new node */
block->mnext = next;
block->mlength = nbytes;
prev->mnext = block;

}

/* Coalesce with next block if adjacent */

if (((uint32) block + block->mlength) == (uint32) next) {
block->mlength += next->mlength;
block->mnext = next->mnext;

}
restore(mask);
return OK;

}

Xinu – module 9 32 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Getstk (Part 1)

/* getstk.c - getstk */

#include <xinu.h>

/*--
* getstk - Allocate stack memory, returning highest word address
*--
*/

char *getstk(
uint32 nbytes /* Size of memory requested */

)
{

intmask mask; /* Saved interrupt mask */
struct memblk *prev, *curr; /* Walk through memory list */
struct memblk *fits, *fitsprev; /* Record block that fits */

mask = disable();
if (nbytes == 0) {

restore(mask);
return (char *)SYSERR;

}

nbytes = (uint32) roundmb(nbytes); /* Use mblock multiples */

prev = &memlist;
curr = memlist.mnext;
fits = NULL;

Xinu – module 9 33 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Getstk (Part 2)

fitsprev = NULL; /* Just to avoid a compiler warning */

while (curr != NULL) { /* Scan entire list */
if (curr->mlength >= nbytes) { /* Record block address */

fits = curr; /* when request fits */
fitsprev = prev;

}
prev = curr;
curr = curr->mnext;

}

if (fits == NULL) { /* No block was found */
restore(mask);
return (char *)SYSERR;

}
if (nbytes == fits->mlength) { /* Block is exact match */

fitsprev->mnext = fits->mnext;
} else { /* Remove top section */

fits->mlength -= nbytes;
fits = (struct memblk *)((uint32)fits + fits->mlength);

}
memlist.mlength -= nbytes;
restore(mask);
return (char *)((uint32) fits + nbytes - sizeof(uint32));

}

Xinu – module 9 34 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Freestk

/* excerpt from memory.h */

/*--
* freestk -- Free stack memory allocated by getstk
*--
*/

#define freestk(p,len) freemem((char *)((uint32)(p) \
- ((uint32)roundmb(len)) \
+ (uint32)sizeof(uint32)), \
(uint32)roundmb(len))

d Implemented as an inline function for efficiency

d Technique

– Convert address from the highest address in block being freed to the lowest address
in the block

– Call freemem with the converted address

Xinu – module 9 35 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Note About Function Names

Although the current implementation uses the same underlying function to release heap
and stack storage, having separate system calls for freestk and freemem maintains the
conceptual distinction and makes the system easier to change later.

Xinu – module 9 36 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary

d To preserve a multi-level hierarchy, the memory manager is divided into two pieces

– A low-level manager is used in kernel to allocate address spaces

– A high-level manager is used to handle abstractions of virtual memory and paging
within a process’s address space

d The Xinu low-level manager offers two types of allocation

– Memory for a process stack

– Memory from the heap

d Stack requests tend to repeat the same size

Xinu – module 9 37 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Summary
(continued)

d The Xinu low-level memory manager

– Places all free memory on a single list

– Rounds all requests to multiples of struct memblk

– Uses first-fit allocation for heap requests and last-fit allocation for stack requests

d Process creation and termination use the memory manager to allocate and free process
stacks

d Create handcrafts an initial stack as if the top-level function had been called; the stack
includes a return address given by constant INITRET

Xinu – module 9 38 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Questions?

