
Module VIII

Inter-Process Communication
(Message Passing)

Xinu – module 8 1 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Location Of Inter-Process Communication In The Hierarchy

Xinu – module 8 2 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Inter-Process Communication

d Can be used for

– Exchange of (nonshared) data among processes

– Some forms of process coordination

d The general technique is known as message passing

Xinu – module 8 3 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Two Approaches To Message Passing

d Approach #1

– Message passing is one of many services the operating system offers

– Messages are basically data items sent from one process to another, and are
independent of both normal I /O and process synchronization services

– Message passing functions are implemented using lower-level mechanisms

d Approach #2

– The entire operating system is message-based

– Messages, not function calls, provide the fundamental building block

– Messages are used to coordinate and control processes

d Note: a few research projects used approach #2, but most systems use approach #1

Xinu – module 8 4 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



An Example Design For A Message Passing Facility

d To understand the issues, we will begin with a trivial message passing facility

d Our example facility will allow a process to send a message directly to another process

d In principle, the design should be straightforward

d In practice, many design decisions arise

Xinu – module 8 5 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Message Passing Design Decisions

d Are messages fixed size or variable size?

d What is the maximum message size?

d How many messages can be outstanding at a given time?

d Where are messages stored?

d How is a recipient specified?

d Does a receiver know the sender’s identity?

d Are replies supported?

d Is the interface synchronous or asynchronous?

Xinu – module 8 6 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Synchronous vs. Asynchronous Interface

d A synchronous interface

– An operation blocks until the operation is performed

– A sending process is blocked until the recipient accepts the message being sent

– A receiving process is blocked until a message arrives

– Is easy to understand and use

– A programmer can create extra processes to obtain asynchrony

Xinu – module 8 7 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Synchronous vs. Asynchronous Interface
(continued)

d An asynchronous interface

– A process starts an operation

– The initiating process continues execution

– A notification arrives when the operation completes

* The notification can arrive at any time

* Typically, notification entails abnormal control flow (e.g., “callback”
mechanism)

– Is more difficult to understand and use

– Polling can be used to determine the status

Xinu – module 8 8 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Why Message Passing Choices Are Difficult

d Message passing interacts with scheduling

– Process A sends a message to process B

– Process B does not check messages

– Process C sends a message to process B

– Process B eventually checks its messages

– If process C has higher priority than A, should B receive the message from C first?

d Message passing affects memory usage

– If messages are stored with a receiver, senders can use up all the receiver’s memory
by flooding the receiver with messages

– If messages are stored with a sender, receivers can use up all the sender’s memory
by not accepting messages

Xinu – module 8 9 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



An Example Message Passing Facility

d We will examine a basic, low-level mechanism

d The facility provides direct process-to-process communication

d Each message is one word (e.g., an integer)

d A message is stored with the receiving process

d A process only has a one-message buffer

d Message reception is synchronous and buffered

d Message transmission is asynchronous

d The facility includes a “reset” operation

Xinu – module 8 10 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



An Example Message Passing Facility
(continued)

d The interface consists of three system calls

send(pid, msg);

msg = receive();

msg = recvclr();

d Send transmits a message to a specified process

d Receive blocks until a message arrives

d Recvclr removes an existing message, if one has arrived, but does not block

d A message is stored in the receiver’s process table entry

Xinu – module 8 11 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



An Example Message Passing Facility
(continued)

d The system uses “first-message” semantics

– The first message sent to a process is stored until it has been received

– Subsequent attempts to send to the process fail

Xinu – module 8 12 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



How To Use First-Message Semantics

d The idea: wait for one of several events to occur

d Example events

– I/O completes

– A user presses a key

– Data arrives over a network

– A hardware indicator signals a low battery

d To use message passing facility to wait for the first event

– Create a process for each event

– When the process detects its event, have it send a message

Xinu – module 8 13 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



How To Use First-Message Semantics
(continued)

d The idiom a receiver uses to identify the first event that occurs

recvclr(); /* prepare to receive a message */

... /* allow other processes to send messages */

msg = receive();

d The above code returns first message that is sent, even if a higher priority process
attempts to send later

d The receiver will block until a message arrives

Xinu – module 8 14 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



A Process State For Message Reception

d While receiving a message, a process is not

– Executing

– Ready

– Suspended

d Therefore, a new state is needed for message passing

d The state is named RECEIVING

d The state is entered when receive called

d The code uses constant PR_RECV to denote a receiving state

Xinu – module 8 15 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



State Transitions With Message Passing

READY CURRENT

resched

resched

SUSPENDED
suspendresume

suspend

RECEIVING
receivesend

Xinu – module 8 16 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



The Steps Taken To Receive A Message

d The current process calls receive

d Receive checks the current process’s entry in the process table

d If no message has arrived, receive moves the calling process to the RECEIVING state to
block until a message arrives

d Once a message arrives,, the process is moved to the READY state and execution of
receive will eventually continue when resched chooses to run the process

d The code in receive extracts a copy of the message from the process table entry and
resets the process table entry to indicate that no message is present

d Receive then returns the message to its caller

Xinu – module 8 17 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Blocking To Wait For A Message

d We have seen how the suspend function suspends the current process

d Blocking the current process to receive a message is almost the same

d Receive

– Finds the current process’s entry in the process table, proctab[currpid]

– Sets the state in the process table entry to PR_RECV, indicating that the process will
be receiving

– Calls resched

Xinu – module 8 18 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Xinu Code For Message Reception

/* receive.c - receive */

#include <xinu.h>

/*------------------------------------------------------------------------
* receive - Wait for a message and return the message to the caller
*------------------------------------------------------------------------
*/

umsg32 receive(void)
{

intmask mask; /* Saved interrupt mask */
struct procent *prptr; /* Ptr to process's table entry */
umsg32 msg; /* Message to return */

mask = disable();
prptr = &proctab[currpid];
if (prptr->prhasmsg == FALSE) {

prptr->prstate = PR_RECV;
resched(); /* Block until message arrives */

}
msg = prptr->prmsg; /* Retrieve message */
prptr->prhasmsg = FALSE; /* Reset message flag */
restore(mask);
return msg;

}

Xinu – module 8 19 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Message Transmission

d To send a message, a process calls send specifying a destination process and a message
to send to the process

d The code

– Checks arguments

– Returns an error if the process already has a message waiting

– Deposits the message

– Makes the process ready if it is in the receiving state

d Note: the code also handles a receive-with-timeout state, but we will consider that state
later

Xinu – module 8 20 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Xinu Code For Message Transmission (Part 1)

/* send.c - send */

#include <xinu.h>

/*------------------------------------------------------------------------
* send - Pass a message to a process and start recipient if waiting
*------------------------------------------------------------------------
*/

syscall send(
pid32 pid, /* ID of recipient process */
umsg32 msg /* Contents of message */

)
{

intmask mask; /* Saved interrupt mask */
struct procent *prptr; /* Ptr to process's table entry */

mask = disable();
if (isbadpid(pid)) {

restore(mask);
return SYSERR;

}

Xinu – module 8 21 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Xinu Code For Message Transmission (Part 2)

prptr->prmsg = msg; /* Deliver message */
prptr->prhasmsg = TRUE; /* Indicate message is waiting */

/* If recipient waiting or in timed-wait make it ready */

if (prptr->prstate == PR_RECV) {
ready(pid);

} else if (prptr->prstate == PR_RECTIM) {
unsleep(pid);
ready(pid);

}
restore(mask); /* Restore interrupts */
return OK;

}

Xinu – module 8 22 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Xinu Code For Clearing Messages

/* recvclr.c - recvclr */

#include <xinu.h>

/*------------------------------------------------------------------------
* recvclr - Clear incoming message, and return message if one waiting
*------------------------------------------------------------------------
*/

umsg32 recvclr(void)
{

intmask mask; /* Saved interrupt mask */
struct procent *prptr; /* Ptr to process's table entry */
umsg32 msg; /* Message to return */

mask = disable();
prptr = &proctab[currpid];
if (prptr->prhasmsg == TRUE) {

msg = prptr->prmsg; /* Retrieve message */
prptr->prhasmsg = FALSE;/* Reset message flag */

} else {
msg = OK;

}
restore(mask);
return msg;

}

Xinu – module 8 23 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Summary Of Message Passing

d Message passing offers an inter-process communication system

d The interface can be synchronous or asynchronous

d A synchronous interface is the easiest to use

d Xinu uses synchronous reception and asynchronous transmission

d An asynchronous operation allows a process to clear any existing message without
blocking

d The Xinu message passing system only allows one outstanding message per process,
and uses first-message semantics

Xinu – module 8 24 2025
Copyright  2025 by Douglas Comer and CRC Press, Inc. All rights reserved.



Questions?


