Module VII|

| nter -Process Communication
(M essage Passing)

Xinu—module 8 1 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

L ocation Of Inter-Process Communication In The Hierarchy

Xinu—module 8 2 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

| nter -Pr ocess Communication

e (Can be used for

— Exchange of (nonshared) data among processes
— Some forms of process coordination

e The general technigue is known as message passing

3 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 8

Two Approaches To Message Passing

e Approach #1
— Message passing IS one of many services the operating system offers

— Messages are basically data items sent from one process to another, and are
Independent of both normal 1 /0O and process synchronization services

— Message passing functions are implemented using lower-level mechanisms
e Approach #2

— The entire operating system is message-based

— Messages, not function calls, provide the fundamental building block

— Messages are used to coordinate and control processes

e Note: afew research projects used approach #2, but most systems use approach #1

Xinu—module 8 4 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example Design For A Message Passing Facility

e To understand the issues, we will begin with atrivial message passing facility
e Our example facility will allow a process to send a message directly to another process
e |n principle, the design should be straightforward

e |n practice, many design decisions arise

Xinu—module 8 5 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

M essage Passing Design Decisions

e Are messages fixed size or variable size?

e What is the maximum message size?

e How many messages can be outstanding at a given time?
e \Where are messages stored?

e How isarecipient specified?

e Does arecelver know the sender’ s identity?

e Are replies supported?

e |sthe interface synchronous or asynchronous?

Xinu—module 8 6 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Synchronous vs. Asynchronous I nterface

e A synchronous interface
— An operation blocks until the operation is performed
— A sending process is blocked until the recipient accepts the message being sent
— A recelving process is blocked until a message arrives
— Iseasy to understand and use

— A programmer can create extra processes to obtain asynchrony

Xinu—module 8 7 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Synchronous vs. Asynchronous I nterface
(continued)

e An asynchronous interface
— A process starts an operation
— The initiating process continues execution
— A notification arrives when the operation completes
* The notification can arrive at any time

* Typicaly, notification entails abnormal control flow (e.g., “callback”
mechanism)

— Is more difficult to understand and use

— Polling can be used to determine the status

Xinu—module 8 8 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Why M essage Passing Choices Are Difficult

e Message passing interacts with scheduling

— Process A sends a message to process B

— Process B does not check messages

— Process C sends a message to process B

— Process B eventually checks its messages

— If process C has higher priority than A, should B receive the message from C first?
e Message passing affects memory usage

— |f messages are stored with a recelver, senders can use up all the receiver’s memory
by flooding the receiver with messages

— If messages are stored with a sender, receivers can use up all the sender’s memory
by not accepting messages

Xinu—module 8 9 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example M essage Passing Facility

e Wewill examine a basic, low-level mechanism

e The facility provides direct process-to-process communication
e Each message is one word (e.g., an integer)

e A message is stored with the receiving process

e A process only has a one-message buffer

e Message reception is synchronous and buffered

e Message transmission Is asynchronous

e The facility includes a “reset” operation

Xinu—module 8 10 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

An Example M essage Passing Facility
(continued)

e The interface consists of three system calls

send(pi d, nsgQ);

msg

59

recei ve(),;

recvceclr();

e Send transmits a message to a specified process

e Receive blocks until a message arrives

e Recvclr removes an existing message, if one has arrived, but does not block

e A message is stored in the receiver’s process table entry

Xinu—module 8

11
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

2025

An Example M essage Passing Facility
(continued)

e The system uses “first-message” semantics
— Thefirst message sent to a process is stored until it has been received

— Subsequent attempts to send to the process fail

Xinu—module 8 12 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

How To Use First-M essage Semantics

e Theidea: wait for one of several events to occur
e Example events
— 1/O completes
— A user presses a key
— Data arrives over a network
— A hardware indicator signals a low battery
e To use message passing facility to wait for the first event
— Create a process for each event

— When the process detects its event, have it send a message

Xinu—module 8 13 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

How To Use First-M essage Semantics
(continued)

e Theidiom arecelver uses to identify the first event that occurs

recvclr(); [/* prepare to receive a nessage */
/[* allow other processes to send nessages */
nsg = receive();
e The above code returns first message that is sent, even if a higher priority process

attempts to send later

e The receiver will block until a message arrives

Xinu—module 8 14 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

A Process State For M essage Reception

e \While receiving a message, a process is not
— Executing
— Ready
— Suspended
e Therefore, a new state is needed for message passing
e The state is named RECEIVING
e The state is entered when receive called

e The code uses constant PR_RECV to denote a recelving state

Xinu—module 8 15 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

State Transitions With M essage Passing

send /////’———N_ receive

CURRENT

suspend

resume /////,:L‘_suspend

Xinu—module 8 16 2025
Copyright 0 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

The Steps Taken To Receive A Message

e The current process calls receive
e Recelve checks the current process' s entry in the process table

e |f no message has arrived, receive moves the calling process to the RECEIVING state to
block until a message arrives

e Once a message arrives,, the process is moved to the READY state and execution of
receive will eventually continue when resched chooses to run the process

e The code in receive extracts a copy of the message from the process table entry and
resets the process table entry to indicate that no message Is present

e Receive then returns the message to its caller

Xinu—module 8 17 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Blocking To Wait For A Message

e \We have seen how the suspend function suspends the current process
e Blocking the current process to recelve a message Is almost the same
e Receve
— Finds the current process's entry in the process table, proctab| currpid]

— Sets the state in the process table entry to PR_RECV, indicating that the process will
be receiving

— Cadlsresched

Xinu—module 8 18 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu Code For M essage Reception

/* receive.c - receive */

#1 ncl ude <xi nu. h>

et
* receive - Wit for a nessage and return the nessage to the caller
*_ _ e - - —-—_—— Y e Y Y Y L Lo
*/
unsg32 receive(void)
{
| nt mask mask; /* Saved interrupt mask */
struct procent *prptr; /* Ptr to process's table entry */
unsg32 nsg; /* Message to return */
mask = di sabl e();
prptr = &proctab[currpid];
i f (prptr->prhasnsg == FALSE) {
prptr->prstate = PR _RECV,
resched(); /* Block until message arrives */
}
nsg = prptr->prnsg; /* Retrieve nessage */
prptr->prhasnsg = FALSE; /* Reset nessage flag */
rest ore(mask) ;
return nsg;
}
Xinu—module 8 19 2025

Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

M essage Transmission

e To send a message, a process calls send specifying a destination process and a message
to send to the process

e The code
— Checks arguments
— Returns an error if the process already has a message waiting
— Deposits the message
— Makes the process ready if it isin the receiving state

e Note: the code also handles a recaive-with-timeout state, but we will consider that state
|ater

Xinu—module 8 20 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

[* send.

Xinu Code For Message Transmission (Part 1)

c - send */

#1 ncl ude <xi nu. h>

*/
syscal |

Xinu—module 8

- Pass a nessage to a process and start recipient if waiting

send(
pi d32 pi d,
unsg32 s g
)

| nt mask nask:
struct procent *prptr;

mask = di sabl e();

I f (isbadpid(pid)) {
rest or e(mask) ;
return SYSERR;

/* 1D of recipient process
/* Contents of nessage

Saved interrupt mask
Ptr to process's table entry

*

S~

21
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

*/
*/

*/
*/

2025

Xinu Code For Message Transmission (Part 2)

prptr->prnsg = neg, /* Deliver nessage */
prptr->prhasnsg = TRUE; /* Indicate nessage is waiting */

[* If recipient waiting or in tinmed-wait nmake it ready */

i f (prptr->prstate == PR _RECV) {
ready(pi d);
} else if (prptr->prstate == PR RECTIM {
unsl eep(pi d);
ready(pi d);
}
rest or e(mask) ; /* Restore interrupts */
return CK;

22 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Xinu—module 8

[* recvclr.c - recvclr

#1 ncl ude <xi nu. h>

* recvelr - (dear

Xinu Code For Clearing M essages

*/

| ncom ng nessage,

and return nessage if one waiting

*/
unsg32 recvclr(void)

{

| nt mask nask:

struct procent

unsg32 ns(g;

mask = di sabl e();
prptr = &proctab[currpid];

*prptr;

S~ S Y~
* * ok

Message to return

i f (prptr->prhasnsg TRUE) {
nsg = prptr->prnsg; /* Retrieve nessage
prptr->prhasnsg = FALSE;/* Reset nessage fl ag
} else {
neg = K
}

rest ore(mask) ;
return nsg;

Xinu—module 8

23
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Saved interrupt mask
Ptr to process's table entry

*/
*/
*/

*/
*/

2025

Summary Of Message Passing

e Message passing offers an inter-process communication system
e The interface can be synchronous or asynchronous

e A synchronous interface is the easiest to use

e Xinu uses synchronous reception and asynchronous transmission

e An asynchronous operation allows a process to clear any existing message without
blocking

e The Xinu message passing system only allows one outstanding message per process,
and uses first-message semantics

Xinu—module 8 24 2025
Copyright O 2025 by Douglas Comer and CRC Press, Inc. All rights reserved.

Ouestions?

